150 lines
5.7 KiB
C

/*
* geany_encoding=koi8-r
* adc.c
*
* Copyright 2017 Edward V. Emelianov <eddy@sao.ru, edward.emelianoff@gmail.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
* MA 02110-1301, USA.
*
*/
#include "stm32f0.h"
#include "flash.h"
#include "adc.h"
/*
* 0 - Steppers current
* 1 - Input voltage 12V
* 2 - EndSwitch2 of motor1
* 3 - EndSwitch1 of motor1
* 4 - EndSwitch1 of motor2
* 5 - EndSwitch2 of motor2
* 6 - inner temperature
* 7 - vref
*/
uint16_t ADC_array[NUMBER_OF_ADC_CHANNELS];
void adc_setup(){
// AIN: PA0..3, PA13, PA14. ADC_IN16 - inner temperature. ADC_IN17 - VREFINT
/* (1) Enable the peripheral clock of the ADC */
/* (2) Set peripheral prescaler to /2 so PCLK = HCLK/2 = 24MHz */
RCC->APB2ENR |= RCC_APB2ENR_ADC1EN; /* (1) */
RCC->CFGR |= RCC_CFGR_PPRE_2; /* (2) */
/* (1) Ensure that ADEN = 0 */
/* (2) Clear ADEN */
/* (3) Launch the calibration by setting ADCAL */
/* (4) Wait until ADCAL=0 */
if ((ADC1->CR & ADC_CR_ADEN) != 0){ /* (1) */
ADC1->CR &= (uint32_t)(~ADC_CR_ADEN); /* (2) */
}
ADC1->CR |= ADC_CR_ADCAL; /* (3) */
while ((ADC1->CR & ADC_CR_ADCAL) != 0){} /* (4) */
/* (1) Enable the ADC */
/* (2) Wait until ADC ready */
do{
ADC1->CR |= ADC_CR_ADEN; /* (1) */
}while ((ADC1->ISR & ADC_ISR_ADRDY) == 0) /* (2) */;
/* (1) Select PCLK/2 by writing 01 in CKMODE */
/* (2) Select the continuous mode */
/* (3) Select CHSEL0..3, 13,14, 16,17 */
/* (4) Select a sampling mode of 111 i.e. 239.5 ADC clk to be greater than 17.1us */
/* (5) Wake-up the VREFINT and Temperature sensor (only for VBAT, Temp sensor and VRefInt) */
ADC1->CFGR2 |= ADC_CFGR2_CKMODE_0; /* (1) */
ADC1->CFGR1 |= ADC_CFGR1_CONT; /* (2)*/
ADC1->CHSELR = ADC_CHSELR_CHSEL0 | ADC_CHSELR_CHSEL1 | ADC_CHSELR_CHSEL2 |
ADC_CHSELR_CHSEL3 | ADC_CHSELR_CHSEL13 | ADC_CHSELR_CHSEL14 |
ADC_CHSELR_CHSEL16 | ADC_CHSELR_CHSEL17; /* (3)*/
ADC1->SMPR |= ADC_SMPR_SMP_0 | ADC_SMPR_SMP_1 | ADC_SMPR_SMP_2; /* (4) */
ADC->CCR |= ADC_CCR_TSEN | ADC_CCR_VREFEN; /* (5) */
// DMA for AIN
/* (1) Enable the peripheral clock on DMA */
/* (2) Enable DMA transfer on ADC and circular mode */
/* (3) Configure the peripheral data register address */
/* (4) Configure the memory address */
/* (5) Configure the number of DMA tranfer to be performs on DMA channel 1 */
/* (6) Configure increment, size, interrupts and circular mode */
/* (7) Enable DMA Channel 1 */
RCC->AHBENR |= RCC_AHBENR_DMA1EN; /* (1) */
ADC1->CFGR1 |= ADC_CFGR1_DMAEN | ADC_CFGR1_DMACFG; /* (2) */
DMA1_Channel1->CPAR = (uint32_t) (&(ADC1->DR)); /* (3) */
DMA1_Channel1->CMAR = (uint32_t)(ADC_array); /* (4) */
DMA1_Channel1->CNDTR = NUMBER_OF_ADC_CHANNELS; /* (5) */
DMA1_Channel1->CCR |= DMA_CCR_MINC | DMA_CCR_MSIZE_0 | DMA_CCR_PSIZE_0 | DMA_CCR_CIRC; /* (6) */
DMA1_Channel1->CCR |= DMA_CCR_EN; /* (7) */
ADC1->CR |= ADC_CR_ADSTART; /* start the ADC conversions */
}
// return MCU temperature (degrees of celsius)
uint32_t getTemp(){
uint32_t temperature = ADC_array[6];
temperature = ((temperature * VDD_APPLI / VDD_CALIB) - (uint32_t) *TEMP30_CAL_ADDR ) ;
temperature *= (uint32_t)(110 - 30);
temperature /= (uint32_t)(*TEMP110_CAL_ADDR - *TEMP30_CAL_ADDR);
temperature += 30;
return(temperature);
}
//static uint32_t calval = 0;
// return Vdd * 10 (V)
uint32_t getVdd(){
/* if(!calval){
calval = ((uint32_t) *VREFINT_CAL_ADDR) * VDD_CALIB;
calval /= VDD_APPLI;
} */
uint32_t vdd = ADC_array[7] * (uint32_t)33 * the_conf.v33numerator; // 3.3V
//vdd /= calval * the_conf.v33denominator;
vdd /= ((uint32_t) *VREFINT_CAL_ADDR) * the_conf.v33denominator;
return vdd;
}
// return value of 12V * 10 (V)
uint32_t getVmot(){
uint32_t vmot = ADC_array[1] * getVdd() * the_conf.v12numerator;
vmot >>= 12;
vmot /= the_conf.v12denominator;
return vmot;
}
// return value of motors' current * 100 (A)
uint32_t getImot(){
uint32_t vmot = ADC_array[0] * getVdd() * the_conf.i12numerator * 10;
vmot >>= 12;
vmot /= the_conf.i12denominator;
return vmot;
}
// end-switches status: 0 - don't activated, 1 - activated, 2 - user button, 4 - error
// @param motnum - motor number (0,1)
// @param eswnum - switch number (0,1)
ESW_status eswStatus(int motnum, int eswnum){
int idx;
if(motnum){ // motor 1
if(eswnum) idx = 5;
else idx = 4;
}else{ // motor 0
if(eswnum) idx = 3;
else idx = 2;
}
uint16_t thres = the_conf.ESW_thres, val = ADC_array[idx];
// low sighal: 0..threshold - Hall activated
if(val < thres) return ESW_HALL;
// high signal: (4096-thres)..4096 - pullup
if(val > (uint16_t)0x1000 - thres) return ESW_RELEASED;
// middle signal: 0x800-thres..0x800+thres - user button active (47k pullup + 47k pulldown)
if(0x800 - thres < val && val < 0x800 + thres) return ESW_BUTTON;
// very strange, return err
return ESW_ERROR;
}