/* * geany_encoding=koi8-r * adc.c * * Copyright 2017 Edward V. Emelianov * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, * MA 02110-1301, USA. * */ #include "stm32f0.h" #include "flash.h" #include "adc.h" /* * 0 - Steppers current * 1 - Input voltage 12V * 2 - EndSwitch2 of motor1 * 3 - EndSwitch1 of motor1 * 4 - EndSwitch1 of motor2 * 5 - EndSwitch2 of motor2 * 6 - inner temperature * 7 - vref */ uint16_t ADC_array[NUMBER_OF_ADC_CHANNELS]; void adc_setup(){ // AIN: PA0..3, PA13, PA14. ADC_IN16 - inner temperature. ADC_IN17 - VREFINT /* (1) Enable the peripheral clock of the ADC */ /* (2) Set peripheral prescaler to /2 so PCLK = HCLK/2 = 24MHz */ RCC->APB2ENR |= RCC_APB2ENR_ADC1EN; /* (1) */ RCC->CFGR |= RCC_CFGR_PPRE_2; /* (2) */ /* (1) Ensure that ADEN = 0 */ /* (2) Clear ADEN */ /* (3) Launch the calibration by setting ADCAL */ /* (4) Wait until ADCAL=0 */ if ((ADC1->CR & ADC_CR_ADEN) != 0){ /* (1) */ ADC1->CR &= (uint32_t)(~ADC_CR_ADEN); /* (2) */ } ADC1->CR |= ADC_CR_ADCAL; /* (3) */ while ((ADC1->CR & ADC_CR_ADCAL) != 0){} /* (4) */ /* (1) Enable the ADC */ /* (2) Wait until ADC ready */ do{ ADC1->CR |= ADC_CR_ADEN; /* (1) */ }while ((ADC1->ISR & ADC_ISR_ADRDY) == 0) /* (2) */; /* (1) Select PCLK/2 by writing 01 in CKMODE */ /* (2) Select the continuous mode */ /* (3) Select CHSEL0..3, 13,14, 16,17 */ /* (4) Select a sampling mode of 111 i.e. 239.5 ADC clk to be greater than 17.1us */ /* (5) Wake-up the VREFINT and Temperature sensor (only for VBAT, Temp sensor and VRefInt) */ ADC1->CFGR2 |= ADC_CFGR2_CKMODE_0; /* (1) */ ADC1->CFGR1 |= ADC_CFGR1_CONT; /* (2)*/ ADC1->CHSELR = ADC_CHSELR_CHSEL0 | ADC_CHSELR_CHSEL1 | ADC_CHSELR_CHSEL2 | ADC_CHSELR_CHSEL3 | ADC_CHSELR_CHSEL13 | ADC_CHSELR_CHSEL14 | ADC_CHSELR_CHSEL16 | ADC_CHSELR_CHSEL17; /* (3)*/ ADC1->SMPR |= ADC_SMPR_SMP_0 | ADC_SMPR_SMP_1 | ADC_SMPR_SMP_2; /* (4) */ ADC->CCR |= ADC_CCR_TSEN | ADC_CCR_VREFEN; /* (5) */ // DMA for AIN /* (1) Enable the peripheral clock on DMA */ /* (2) Enable DMA transfer on ADC and circular mode */ /* (3) Configure the peripheral data register address */ /* (4) Configure the memory address */ /* (5) Configure the number of DMA tranfer to be performs on DMA channel 1 */ /* (6) Configure increment, size, interrupts and circular mode */ /* (7) Enable DMA Channel 1 */ RCC->AHBENR |= RCC_AHBENR_DMA1EN; /* (1) */ ADC1->CFGR1 |= ADC_CFGR1_DMAEN | ADC_CFGR1_DMACFG; /* (2) */ DMA1_Channel1->CPAR = (uint32_t) (&(ADC1->DR)); /* (3) */ DMA1_Channel1->CMAR = (uint32_t)(ADC_array); /* (4) */ DMA1_Channel1->CNDTR = NUMBER_OF_ADC_CHANNELS; /* (5) */ DMA1_Channel1->CCR |= DMA_CCR_MINC | DMA_CCR_MSIZE_0 | DMA_CCR_PSIZE_0 | DMA_CCR_CIRC; /* (6) */ DMA1_Channel1->CCR |= DMA_CCR_EN; /* (7) */ ADC1->CR |= ADC_CR_ADSTART; /* start the ADC conversions */ } // return MCU temperature (degrees of celsius) uint32_t getTemp(){ uint32_t temperature = ADC_array[6]; temperature = ((temperature * VDD_APPLI / VDD_CALIB) - (uint32_t) *TEMP30_CAL_ADDR ) ; temperature *= (uint32_t)(110 - 30); temperature /= (uint32_t)(*TEMP110_CAL_ADDR - *TEMP30_CAL_ADDR); temperature += 30; return(temperature); } //static uint32_t calval = 0; // return Vdd * 10 (V) uint32_t getVdd(){ /* if(!calval){ calval = ((uint32_t) *VREFINT_CAL_ADDR) * VDD_CALIB; calval /= VDD_APPLI; } */ uint32_t vdd = ADC_array[7] * (uint32_t)33 * the_conf.v33numerator; // 3.3V //vdd /= calval * the_conf.v33denominator; vdd /= ((uint32_t) *VREFINT_CAL_ADDR) * the_conf.v33denominator; return vdd; } // return value of 12V * 10 (V) uint32_t getVmot(){ uint32_t vmot = ADC_array[1] * getVdd() * the_conf.v12numerator; vmot >>= 12; vmot /= the_conf.v12denominator; return vmot; } // return value of motors' current * 100 (A) uint32_t getImot(){ uint32_t vmot = ADC_array[0] * getVdd() * the_conf.i12numerator * 10; vmot >>= 12; vmot /= the_conf.i12denominator; return vmot; } // end-switches status: 0 - don't activated, 1 - activated, 2 - user button, 4 - error // @param motnum - motor number (0,1) // @param eswnum - switch number (0,1) ESW_status eswStatus(int motnum, int eswnum){ int idx; if(motnum){ // motor 1 if(eswnum) idx = 5; else idx = 4; }else{ // motor 0 if(eswnum) idx = 3; else idx = 2; } uint16_t thres = the_conf.ESW_thres, val = ADC_array[idx]; // low sighal: 0..threshold - Hall activated if(val < thres) return ESW_HALL; // high signal: (4096-thres)..4096 - pullup if(val > (uint16_t)0x1000 - thres) return ESW_RELEASED; // middle signal: 0x800-thres..0x800+thres - user button active (47k pullup + 47k pulldown) if(0x800 - thres < val && val < 0x800 + thres) return ESW_BUTTON; // very strange, return err return ESW_ERROR; }