lectures/Komp_obr/05-sistur.tex
2020-08-05 19:26:59 +03:00

227 lines
6.9 KiB
TeX
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

\documentclass[10pt,pdf,hyperref={unicode}]{beamer}
\hypersetup{pdfpagemode=FullScreen}
\usepackage{ed}
\usepackage{lect}
\title[ëÏÍÐØÀÔÅÒÎÁÑ ÏÂÒÁÂÏÔËÁ. ìÅËÃÉÑ 5.]{ëÏÍÐØÀÔÅÒÎÁÑ ÏÂÒÁÂÏÔËÁ ÒÅÚÕÌØÔÁÔÏ×
ÉÚÍÅÒÅÎÉÊ}
\subtitle{ìÅËÃÉÑ 5. óÉÓÔÅÍÙ ÕÒÁ×ÎÅÎÉÊ}
\date{29 ÓÅÎÔÑÂÒÑ 2016 ÇÏÄÁ}
\begin{document}
% ôÉÔÕÌ
\begin{frame}
\maketitle
\end{frame}
% óÏÄÅÒÖÁÎÉÅ
\begin{frame}
\tableofcontents
\end{frame}
\section{óÉÓÔÅÍÙ ÕÒÁ×ÎÅÎÉÊ}
\begin{frame}{óÉÓÔÅÍÙ ÕÒÁ×ÎÅÎÉÊ}
\begin{defin}
óÉÓÔÅÍÁ ÌÉÎÅÊÎÙÈ ÕÒÁ×ÎÅÎÉÊ ÄÌÑ $n$ ÎÅÉÚ×ÅÓÔÎÙÈ ÉÍÅÅÔ ×ÉÄ:
$$
\left\{
\begin{aligned}
a_{11}x_1+a_{12}x_2&+\cdots+a_{1n}x_n&=b_1;\\
a_{21}x_1+a_{22}x_2&+\cdots+a_{2n}x_n&=b_2;\\
\cdots\\
a_{n1}x_1+a_{n2}x_2&+\cdots+a_{nn}x_n&=b_n.
\end{aligned}
\right.
$$
\end{defin}
\begin{defin}
åÓÌÉ ÓÕÝÅÓÔ×ÕÅÔ ×ÅËÔÏÒ--ÓÔÏÌÂÅÃ~$\B x$, ÏÂÒÁÝÁÀÝÉÊ ×ÙÒÁÖÅÎÉÅ~$\B{Ax=b}$ × ÔÏÖÄÅÓÔ×Ï, ÇÏ×ÏÒÑÔ,
ÞÔÏ~$\B x$ Ñ×ÌÑÅÔÓÑ ÒÅÛÅÎÉÅÍ ÄÁÎÎÏÊ ÓÉÓÔÅÍÙ ÕÒÁ×ÎÅÎÉÊ.
$|\B A|\ne0$.
\end{defin}
\end{frame}
\begin{frame}{íÅÔÏÄÙ ÒÅÛÅÎÉÊ}
\only<1>{\begin{block}{}
$\delta=\B{Ax-b}$.
ðÒÉÂÌÉÖÅÎÎÙÅ ÍÅÔÏÄÙ: $\mathrm{min}(\delta)$. ôÏÞÎÙÅ ÍÅÔÏÄÙ: $\delta=0$.\\
\end{block}
\begin{block}{íÅÔÏÄ ÐÒÏÓÔÏÊ ÉÔÅÒÁÃÉÉ}
$\B{x=Bx+c}$, $\B x_{n+1}=\B B\B x_n+\B c$.\\
óÌÏÖÎÏÓÔØÀ ÍÅÔÏÄÁ ÐÒÏÓÔÏÊ ÉÔÅÒÁÃÉÉ ÐÒÉ ÒÅÛÅÎÉÉ ÍÁÔÒÉà ÂÏÌØÛÉÈ ÒÁÚÍÅÒÎÏÓÔÅÊ Ñ×ÌÑÅÔÓÑ ÏÓÏÂÏÅ Ó×ÏÊÓÔ×Ï
ÔÁËÉÈ ÍÁÔÒÉÃ~--- ÓÕÝÅÓÔ×Ï×ÁÎÉÅ ÐÏÞÔÉ ÓÏÂÓÔ×ÅÎÎÙÈ ÚÎÁÞÅÎÉÊ, $\lambda$:
$||\B{Ax}-\lambda\B x||\le\epsilon||\B x||$ ÐÒÉ $||\B x||\ne0$.\\
\end{block}
\begin{block}{íÁÔÒÉÞÎÙÊ ÍÅÔÏÄ}
$\B x = \B A^{-1}\B b$
\end{block}
}
\only<2>{
\begin{block}{íÅÔÏÄ çÁÕÓÓÁ}
$$
\B A_d\B{x} = \pmb\beta,\quad
\B A_d=\begin{pmatrix}
\alpha_{11}&\alpha_{12}&\alpha_{13}&\cdots&\alpha_{1m}\\
0&\alpha_{22}&\alpha_{23}&\cdots&\alpha_{2m}\\
\cdot&\cdot&\cdot&\cdots&\cdot\\
0&0&0&\cdots&\alpha_{mm}
\end{pmatrix}.
$$
ðÒÑÍÏÊ ÈÏÄ~--- ÐÒÅÏÂÒÁÚÏ×ÁÎÉÅ Ë ÄÉÁÇÏÎÁÌØÎÏÊ ÆÏÒÍÅ:
$$
\left(\begin{matrix}
\alpha_{11}&\alpha_{12}&\alpha_{13}&\cdots&\alpha_{1m}\\
0&\alpha_{22}&\alpha_{23}&\cdots&\alpha_{2m}\\
\cdot&\cdot&\cdot&\cdots&\cdot\\
0&0&0&\cdots&\alpha_{mm}
\end{matrix}\middle|
\begin{matrix}\beta_1\\\beta_2\\\cdot\\\beta_m\end{matrix}\right).
$$
ïÂÒÁÔÎÙÊ ÈÏÄ~--- ÐÏÓÌÅÄÏ×ÁÔÅÌØÎÏÅ ÎÁÈÏÖÄÅÎÉÅ $x_m$, $x_{m-1}$, \dots, $x_1$.
$N\propto n^3$~--- ÐÒÑÍÏÊ, $N\propto n^2$~--- ÏÂÒÁÔÎÙÊ ÈÏÄ.
\end{block}
}
\only<3>{
\begin{block}{}
íÅÔÏÄ úÅÊÄÅÌÑ: \\
$$\B{Bx}_{n+1}+\B{Cx}_n=\B b,$$
ÇÄÅ
$$\B B=\begin{pmatrix}
a_{11}&0&0&\cdots&0\\
a_{21}&a_{22}&0&\cdots&0\\
\cdot&\cdot&\cdot&\cdots&\cdot\\
a_{m1}&a_{m2}&a_{m3}&\cdots&a_{mm}
\end{pmatrix},\qquad
\B C=\begin{pmatrix}
0&a_{12}&a_{13}&\cdots&a_{1m}\\
0&0&a_{23}&\cdots&a_{2m}\\
\cdot&\cdot&\cdot&\cdots&\cdot\\
0&0&0&\cdots&0
\end{pmatrix}.
$$
ïÔÓÀÄÁ ÐÏÌÕÞÁÅÍ
$$\B x_{n+1}=-\B B^{-1}\B{Cx}_n +\B B^{-1}\B b.$$
\end{block}
}
\only<4>{
\begin{block}{}
åÓÌÉ $\B A$ ÓÏÄÅÒÖÉÔ~$m$ ÓÔÒÏË É~$n$ ÓÔÏÌÂÃÏ×, ÔÏ:
\begin{description}
\item[$m=n$] Ë×ÁÄÒÁÔÎÁÑ ÍÁÔÒÉÃÁ, ×ÏÚÍÏÖÎÏ ÓÕÝÅÓÔ×Ï×ÁÎÉÅ ÔÏÞÎÏÇÏ ÒÅÛÅÎÉÑ;
\item[$m<n$] ÎÅÄÏÏÐÒÅÄÅÌÅÎÎÁÑ ÓÉÓÔÅÍÁ, ÒÅÛÅÎÉÅ ×ÏÚÍÏÖÎÏ ÌÉÛØ × ÏÂÝÅÍ ×ÉÄÅ
Ó ÐÏ ËÒÁÊÎÅÊ ÍÅÒÅ~$n-m$ Ó×ÏÂÏÄÎÙÈ ËÏÜÆÆÉÃÉÅÎÔÏ×;
\item[$m>n$] ÐÅÒÅÏÐÒÅÄÅÌÅÎÎÁÑ ÓÉÓÔÅÍÁ, ÐÒÉÂÌÉÖÅÎÎÏÅ ÒÅÛÅÎÉÅ ËÏÔÏÒÏÊ ÎÁÈÏÄÉÔÓÑ
ÐÒÉ ÐÏÍÏÝÉ ÍÅÔÏÄÁ ÎÁÉÍÅÎØÛÉÈ Ë×ÁÄÒÁÔÏ× (× ÓÌÕÞÁÅ ÌÉÎÅÊÎÏÊ ÚÁ×ÉÓÉÍÏÓÔÉ ÓÔÒÏË
ÄÁÎÎÏÊ ÓÉÓÔÅÍÙ ÍÏÖÅÔ ÓÕÝÅÓÔ×Ï×ÁÔØ É ÔÏÞÎÏÅ ÒÅÛÅÎÉÅ).
\end{description}
\end{block}
\begin{block}{ðÒÉÂÌÉÖÅÎÎÙÅ ÒÅÛÅÎÉÑ}
íîë ($\B{x=A\backslash b}$), ÐÓÅ×ÄÏÏÂÒÁÔÎÁÑ ÍÁÔÒÉÃÁ, \dots
\end{block}
}
\end{frame}
\section{óÔÅÐÅÎÎÙÅ ÕÒÁ×ÎÅÎÉÑ}
\begin{frame}{óÔÅÐÅÎÎÙÅ ÕÒÁ×ÎÅÎÉÑ}
\begin{defin}
óÔÅÐÅÎÎÏÅ ÕÒÁ×ÎÅÎÉÅ ÉÍÅÅÔ ×ÉÄ $p_n(x)=0$, ÇÄÅ $p_n(x)$~-- ÐÏÌÉÎÏÍ~$n$~-Ê ÓÔÅÐÅÎÉ ×ÉÄÁ
$p_n(x)=\sum_{i=0}^n C_nx^n$.
\end{defin}
\begin{block}{íÅÔÏÄÙ ÒÅÛÅÎÉÑ}
ôÏÞÎÙÅ~--- ÄÏ ÔÒÅÔØÅÊ ÓÔÅÐÅÎÉ ×ËÌÀÞÉÔÅÌØÎÏ (× ÏÂÝÅÍ ÓÌÕÞÁÅ) É ÉÔÅÒÁÃÉÏÎÎÙÅ:
\begin{description}
\item[ÂÉÓÅËÃÉÑ] ÄÅÌÅÎÉÅ ÐÏÐÏÌÁÍ ÏÔÒÅÚËÁ, ÇÄÅ ÎÁÈÏÄÉÔÓÑ ËÏÒÅÎØ;
\item[ÍÅÔÏÄ ÈÏÒÄ] ÚÁÍÅÎÁ ÐÏÌÉÎÏÍÁ ÈÏÒÄÏÊ, ÐÒÏÈÏÄÑÝÅÊ ÞÅÒÅÚ ÔÏÞËÉ $(x_1, p_n(x_1)$ É $(x_2,
p_n(x_2)$;
\item[ÍÅÔÏÄ îØÀÔÏÎÁ] ÉÍÅÅÔ ÂÙÓÔÒÕÀ ÓÈÏÄÉÍÏÓÔØ, ÎÏ ÔÒÅÂÕÅÔ ÚÎÁËÏÐÏÓÔÏÑÎÓÔ×Á $f'(x)$ É $f''(x)$ ÎÁ
×ÙÂÒÁÎÎÏÍ ÉÎÔÅÒ×ÁÌÅ $(x_1, x_2)$.
\end{description}
\end{block}
\end{frame}
\begin{blueframe}{íÅÔÏÄ îØÀÔÏÎÁ}
\img[0.7]{Newton_iteration}
\end{blueframe}
\section{þÉÓÌÅÎÎÏÅ ÉÎÔÅÇÒÉÒÏ×ÁÎÉÅ É ÄÉÆÆÅÒÅÎÃÉÒÏ×ÁÎÉÅ}
\begin{frame}{þÉÓÌÅÎÎÏÅ ÉÎÔÅÇÒÉÒÏ×ÁÎÉÅ É ÄÉÆÆÅÒÅÎÃÉÒÏ×ÁÎÉÅ}
\only<1>{
\begin{block}{þÉÓÌÅÎÎÏÅ ÉÎÔÅÇÒÉÒÏ×ÁÎÉÅ}
äÌÑ ÞÉÓÌÅÎÎÏÇÏ ÒÅÛÅÎÉÑ ÕÒÁ×ÎÅÎÉÑ $\displaystyle I=\Int_a^b f(x)\,dx$ ÎÁÉÂÏÌÅÅ ÐÏÐÕÌÑÒÎÙ:
\begin{description}
\item[ÍÅÔÏÄ ÐÒÑÍÏÕÇÏÌØÎÉËÏ×] $I\approx\sum_{i=1}^n f(x_i)[x_i-x_{i-1}]$;
\item[ÍÅÔÏÄ ÔÒÁÐÅÃÉÊ] $I\approx\sum_{i=1}^n \frac{f(x_{i-1})+f(x_i)}{2}[x_i-x_{i-1}]$;
\item[ÍÅÔÏÄ óÉÍÐÓÏÎÁ] $\Int_{-1}^1 f(x)\,dx\approx\frac13\bigl(f(-1)+4f(0)+f(1)\bigr)$ \so
$I\approx\frac{b-a}{6n}\Bigl(f(x_0)+f(x_n)+2\sum_{i=1}^{n/2-1}
f(x_{2i}) + 4\sum_{i=1}^{n/2}f(x_{2i-1})\Bigr)$.
\end{description}
É ÍÎÏÇÉÅ ÄÒÕÇÉÅ.
\end{block}}
\only<2>{
\begin{block}{þÉÓÌÅÎÎÏÅ ÄÉÆÆÅÒÅÎÃÉÒÏ×ÁÎÉÅ}
áÐÐÒÏËÓÉÍÁÃÉÑ ÆÕÎËÃÉÉ ÉÎÔÅÒÐÏÌÑÃÉÏÎÎÙÍ ÍÎÏÇÏÞÌÅÎÏÍ (îØÀÔÏÎÁ, óÔÉÒÌÉÎÇÁ É Ô.Ð.), ÒÁÚÄÅÌÅÎÎÙÅ
ÒÁÚÎÏÓÔÉ.
÷ ÎÕÌÅ×ÏÍ ÐÒÉÂÌÉÖÅÎÉÉ ÍÏÖÎÏ ÚÁÍÅÎÉÔØ ÐÒÏÉÚ×ÏÄÎÕÀ $f^{(n)}$ ÒÁÚÄÅÌÅÎÎÏÊ ÒÁÚÎÏÓÔØÀ $n$-ÇÏ ÐÏÒÑÄËÁ:
$$f(x_0; x_1; \ldots; x_n) = \sum_{i=0}^n \frac{f(x_i)}{\displaystyle
\prod_{j=0, j\ne i}^n\!\!(x_i - x_j)}.$$
\end{block}}
\end{frame}
\section{äÉÆÆÅÒÅÎÃÉÁÌØÎÙÅ ÕÒÁ×ÎÅÎÉÑ}
\begin{frame}{äÉÆÆÅÒÅÎÃÉÁÌØÎÙÅ ÕÒÁ×ÎÅÎÉÑ}
\only<1>{
\begin{defin}
ïÂÙËÎÏ×ÅÎÎÙÅ ÄÉÆÆÅÒÅÎÃÉÁÌØÎÙÅ ÕÒÁ×ÎÅÎÉÑ~(ïäõ) ÐÏÒÑÄËÁ~$n$ ÚÁÄÁÀÔÓÑ × ×ÉÄÅ
ÆÕÎËÃÉÉ $f(x,y,y',\ldots,y^{(n)})=0$.
\end{defin}
\begin{block}{}
òÁÚÄÅÌÅÎÉÅ ÐÅÒÅÍÅÎÎÙÈ:\vspace{-2em}
$$y'=f(x,y) \so \phi(y)\,dy=\psi(x)\,dx \so y=y_0+\Int_0^{x}\psi(x)\,dx.$$
ïäõ ×ÔÏÒÏÇÏ ÐÏÒÑÄËÁ:
$$Ay''+By'+Cy+Dx=0.$$
åÓÌÉ $D\equiv0$, Á ÍÎÏÖÉÔÅÌÉ $A$, $B$ É~$C$~--- ËÏÎÓÔÁÎÔÙ, ÉÍÅÅÍ ÏÄÎÏÒÏÄÎÏÅ ïäõ.
$y=\C_1\exp(k_1x)+\C_2\exp(k_2x)$, ÇÄÅ~$k_1$ É~$k_2$~-- ËÏÒÎÉ
ÈÁÒÁËÔÅÒÉÓÔÉÞÅÓËÏÇÏ ÕÒÁ×ÎÅÎÉÑ $Ak^2+Bk+C=0$.
\end{block}}
\only<2>{
\begin{defin}
äÉÆÆÅÒÅÎÃÉÁÌØÎÙÅ ÕÒÁ×ÎÅÎÉÑ × ÞÁÓÔÎÙÈ ÐÒÏÉÚ×ÏÄÎÙÈ~(þäõ) ÄÌÑ ÆÕÎËÃÉÉ
$y=y(x_1,x_2,\cdots,x_n)$ ÉÍÅÀÔ ×ÉÄ
$$f(y,x_1,\ldots,x_n;\partder{y}{x_1},\ldots;\dpartder{y}{x_1},\ldots;\cdots;
\frac{\partial^m y}{\partial x_1^m},\ldots)=0.$$
\end{defin}
\begin{block}{}
ïÄÎÁËÏ, ÎÁÉÂÏÌÅÅ ÞÁÓÔÏ ×ÓÔÒÅÞÁÀÔÓÑ þäõ ÐÅÒ×ÏÇÏ ÐÏÒÑÄËÁ ÄÌÑ ÆÕÎËÃÉÉ Ä×ÕÈ
ÐÅÒÅÍÅÎÎÙÈ $z=z(x,y)$ ×ÉÄÁ
$$f(z,x,y,\partder{z}{x},\partder{z}{y})=0.$$
\end{block}}
\only<3>{
\begin{block}
îÅÌÉÎÅÊÎÙÅ ÄÉÆÆÅÒÅÎÃÉÁÌØÎÙÅ ÕÒÁ×ÎÅÎÉÑ ÓÏÄÅÒÖÁÔ ÎÅËÏÔÏÒÙÅ ÐÒÏÉÚ×ÏÄÎÙÅ
ÆÕÎËÃÉÉ~$y$ ÎÅ ËÁË ÐÒÏÓÔÙÅ ÍÎÏÖÉÔÅÌÉ, Á ËÁË ÁÒÇÕÍÅÎÔÙ ÆÕÎËÃÉÊ (ÞÁÝÅ ×ÓÅÇÏ~---
ÓÔÅÐÅÎÎÙÈ), ÎÁÐÒÉÍÅÒ: $(y'')^3-\sin y'=\tg(xy)$. ïÂÙÞÎÙÅ ÆÉÚÉÞÅÓËÉÅ ÚÁÄÁÞÉ
ÎÉËÏÇÄÁ ÎÅ ÐÒÉ×ÏÄÑÔ Ë ÔÁËÉÍ ÕÒÁ×ÎÅÎÉÑÍ, ÏÄÎÁËÏ, É ÉÈ ÒÅÛÅÎÉÑ ×ÐÏÌÎÅ ÍÏÖÎÏ
ÎÁÊÔÉ ÐÒÉ ÐÏÍÏÝÉ ÞÉÓÌÅÎÎÙÈ ÍÅÔÏÄÏ×.
\end{block}
\begin{block}{íÅÔÏÄÙ ÒÅÛÅÎÉÑ}
òÕÎÇÅ--ëÕÔÔÙ, üÊÌÅÒÁ, áÄÁÍÓÁ, ËÏÎÅÞÎÙÈ ÒÁÚÎÏÓÔÅÊ É Ô.Ð.
äÉÆÆÅÒÅÎÃÉÁÌØÎÙÅ ÕÒÁ×ÎÅÎÉÑ ×ÙÓÛÉÈ ÐÏÒÑÄËÏ× Ó×ÏÄÑÔ ÐÕÔÅÍ ÚÁÍÅÎÙ ÐÅÒÅÍÅÎÎÙÈ Ë ÓÉÓÔÅÍÅ ïäõ ÐÅÒ×ÏÇÏ
ÐÏÒÑÄËÁ.
\end{block}
}
\end{frame}
\begin{frame}{óÐÁÓÉÂÏ ÚÁ ×ÎÉÍÁÎÉÅ!}
\centering
\begin{minipage}{5cm}
\begin{block}{mailto}
eddy@sao.ru\\
edward.emelianoff@gmail.com
\end{block}\end{minipage}
\end{frame}
\end{document}