2014-03-19 00:38:10 +04:00

243 lines
6.0 KiB
C

/*
* stepper.c
*
* Copyright 2014 Edward V. Emelianov <eddy@sao.ru, edward.emelianoff@gmail.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
* MA 02110-1301, USA.
*/
#include "ports_definition.h"
#include "stepper.h"
volatile int Nsteps[3]={0,0,0}; // Number of steps
volatile int usteps[3] = {0,0,0};// microstepping counters
U8 Motor_number = 5; // Number of motor to move, 5 -- not moving
U16 Stepper_speed[3] = {1000,1000,1000}; // length of one MICROstep in us
U8* Timers[3] = {0x5250, 0x5300, 0x5320}; // {&TIM1_CR1, &TIM2_CR1, &TIM3_CR1}
U8 EPs[3] = {0,0,0}; // value of conditional stop-on-EP terminals status
U8 Stop_on_EP[3] = {0,0,0}; // boolean: whether motor should freely move or stop on EPs
U8 USteps = 16; // amount of microsteps on each step
U8 StepperInfty = 0; // infinity moving
#define pause_motor(N) *Timers[N] &= ~TIM_CR1_CEN
#define resume_motor(N) *Timers[N] |= TIM_CR1_CEN
#define check_motor(N) *Timers[N] & TIM_CR1_CEN
#define PPOUT(P, PIN) do{PORT(P, DDR) |= PIN; PORT(P, CR1) |= PIN;}while(0)
#define _MTR(X, N) PPOUT(STP ## N ## _ ## X ## _PORT, STP ## N ## _ ## X ## _PIN)
#define SETUP_MOTOR_PORT(X) do{_MTR(X,0); _MTR(X,1); _MTR(X,2);}while(0)
#define TMR(a, b) CONCAT(a , b)
#define TIMER_CONF(reg, val) do{TMR(TIM1, reg) = val; TMR(TIM2, reg) = val; TMR(TIM3, reg) = val;}while(0)
/**
* Setup pins of stepper motor (all - PP out) & timers
*/
void setup_stepper_pins(){
// CLK
SETUP_MOTOR_PORT(CLK);
// DIR
SETUP_MOTOR_PORT(DIR);
// EN
SETUP_MOTOR_PORT(EN);
// End point switches:
SETUP_EP(0);
SETUP_EP(1);
SETUP_EP(2);
/**** TIMERS (all - 1MHz, default speed - 1000 Hz) ****/
// Motor x - timer x+1
TIM1_PSCRH = 0; // this timer have 16 bit prescaler
TIM1_PSCRL = 15; // LSB should be written last as it updates prescaler
TIM2_PSCR = 4;
TIM3_PSCR = 4;
// auto-reload each 1ms: TIM_ARR = 1000 = 0x03E8
TIMER_CONF(ARRH, 0x03);
TIMER_CONF(ARRL, 0xE8);
// 50% duty cycle: TIM_CCR = 500 = 0x01F4
TIMER_CONF(CCR1H, 0x01);
TIMER_CONF(CCR1L, 0xF4);
// channel 1 generates PWM pulses
TIMER_CONF(CCMR1, 0x60); // OC1M = 110b - PWM mode 1 ( 1 -> 0)
TIMER_CONF(CCER1, 1); // Channel 1 is on. Active is high
// interrupts: update
TIMER_CONF(IER, TIM_IER_UIE);
// auto-reload + interrupt on overflow
TIMER_CONF(CR1, TIM_CR1_APRE | TIM_CR1_URS);
// enable PWM output for timer1
TIM1_BKR |= 0x80; // MOE
// Turn off EN
PORT(STP0_EN_PORT, ODR) |= STP0_EN_PIN;
PORT(STP1_EN_PORT, ODR) |= STP1_EN_PIN;
PORT(STP2_EN_PORT, ODR) |= STP2_EN_PIN;
}
/**
* Set speed of stepper motor
* @param N - number of motor
* @param Sps - period (in us) of one MICROstep
*/
void set_stepper_speed(U8 N, U16 SpS){
U8 AH, AL, CH, CL;
if(N > 2) return;
Stepper_speed[N] = SpS;
AH = SpS >> 8;
AL = SpS & 0xff;
SpS >>= 1; // divide to 2 - 50% duty cycle
CH = SpS >> 8;
CL = SpS & 0xff;
switch(N){
case 0:
TIM1_ARRH = AH;
TIM1_ARRL = AL;
TIM1_CCR1H = CH;
TIM1_CCR1L = CL;
break;
case 1:
TIM2_ARRH = AH;
TIM2_ARRL = AL;
TIM2_CCR1H = CH;
TIM2_CCR1L = CL;
break;
case 2:
TIM3_ARRH = AH;
TIM3_ARRL = AL;
TIM3_CCR1H = CH;
TIM3_CCR1L = CL;
break;
}
}
/**
* Move motor N for 'Steps' amount of steps
* @param N - number of motor
* @param Steps - number of steps to move (negative value means to move CCV)
*/
void move_motor(U8 N, int Steps){
if(N > 2) return;
pause_motor(N);
if(Steps < 0){// dir to left
switch(N){
case 0:
PORT(STP0_DIR_PORT, ODR) |= STP0_DIR_PIN;
break;
case 1:
PORT(STP1_DIR_PORT, ODR) |= STP1_DIR_PIN;
break;
case 2:
PORT(STP2_DIR_PORT, ODR) |= STP2_DIR_PIN;
break;
}
Steps *= -1;
}
// turn on EN
switch(N){
case 0:
PORT(STP0_EN_PORT, ODR) &= ~STP0_EN_PIN;
break;
case 1:
PORT(STP1_EN_PORT, ODR) &= ~STP1_EN_PIN;
break;
case 2:
PORT(STP2_EN_PORT, ODR) &= ~STP2_EN_PIN;
break;
}
Nsteps[N] = Steps;
resume_motor(N);
uart_write("move");
printUint(&N, 1);
}
/**
* Stop motor N
* @param N - number of motor
*/
void stop_motor(U8 N){
if(N > 2) return;
pause_motor(N);
switch(N){ // turn off DIR & EN
case 0:
PORT(STP0_DIR_PORT, ODR) &= ~STP0_DIR_PIN;
PORT(STP0_EN_PORT, ODR) |= STP0_EN_PIN;
break;
case 1:
PORT(STP1_DIR_PORT, ODR) &= ~STP1_DIR_PIN;
PORT(STP1_EN_PORT, ODR) |= STP1_EN_PIN;
break;
case 2:
PORT(STP2_DIR_PORT, ODR) &= ~STP2_DIR_PIN;
PORT(STP2_EN_PORT, ODR) |= STP2_EN_PIN;
break;
}
StepperInfty = 0; // clear infinity flag
Nsteps[N] = 0;
usteps[N] = 0;
uart_write("stop");
printUint(&N, 1);
}
/**
* Pause or resume motor N
* @param N - number of motor
*/
void pause_resume(U8 N){
if(N > 2) return;
if(Nsteps[N] == 0) return; // motor is stopped
if(check_motor(N)){ // motor is running - pause
pause_motor(N);
uart_write("pause");
}else{ // resume
resume_motor(N);
uart_write("resume");
}
printUint(&N, 1);
}
/**
* Get current value of EP switches
* @param N - number of motor
* @return value of EPs
*/
U8 get_ep_value(U8 N){
U8 val = 0;
switch(N){
case 0:
val = READ_EP(0);
break;
case 1:
val = READ_EP(1);
break;
case 2:
val = READ_EP(2);
break;
}
return val;
}
/**
* Checks for "stop-on-EP" condition
* @param
* @return
*/
void check_EP(){
U8 i;
for(i = 0; i < 3; i++){
if(Stop_on_EP[i] == 0) continue;
if(EPs[i] == get_ep_value(i)){
stop_motor(i);
uart_write("endpoint\n");
// Stop_on_EP[i] = 0; // reset off-condition
}
}
}