RaptorEagleV/raptor_eagle_ccd.cpp
2024-12-17 18:00:14 +03:00

1983 lines
67 KiB
C++

#include <cmath>
#include <cstring>
#include "raptor_eagle_cameralink.h"
#include "raptor_eagle_ccd.h"
#include "raptor_eagle_exception.h"
#include <common/adc_utils.h>
namespace details
{
// compute checksum as XOR operation along elements of byte array
template <std::ranges::input_range R>
auto computeChecksum(const R& bytes, bool final_etx = true)
requires std::convertible_to<std::ranges::range_value_t<R>, char>
{
std::ranges::range_value_t<R> res = 0;
if (std::ranges::size(bytes) == 0) {
return res;
}
for (auto& byte : bytes) {
res ^= byte;
}
if (final_etx) {
res ^= CL_ETX;
}
return res;
}
// assume that least significant byte is the last one in 'bytes'
// only the first 5 elements of the input range are taken
template <std::ranges::input_range R>
size_t convert40BitToCounts(const R& bytes)
requires std::same_as<std::ranges::range_value_t<R>, unsigned char>
{
// size_t counts = 0, i = std::ranges::size(bytes);
// for (auto& byte : bytes| std::views::take(5)) {
// counts += byte << (--i * 8);
// }
if (std::ranges::size(bytes) == 0)
return 0;
size_t counts = *bytes.begin();
for (auto& byte : bytes | std::views::drop(1) | std::views::take(4)) {
counts <<= 8;
counts |= byte;
}
return counts;
}
// NOTE: it is assumed little-endian host's platform!!!
// return an range with least significant byte in the end of the range
template <std::ranges::output_range<unsigned char> R = std::vector<unsigned char>>
R convertCountsTo40Bit(uint64_t counts)
{
R res;
auto sp = std::span(reinterpret_cast<unsigned char*>(&counts), 8);
// least significant byte in the end of the output range
std::ranges::copy(sp | std::views::take(5) | std::views::reverse, std::back_inserter(res));
return res;
}
// assume that least significant byte is the last one in 'bytes'
// only the first 2 elements of the input range are taken
template <std::ranges::input_range R>
uint16_t convert12BitToUInt(const R& bytes)
requires std::same_as<std::ranges::range_value_t<R>, unsigned char>
{
if (std::ranges::size(bytes) == 0)
return 0;
auto v = bytes | std::views::reverse | std::views::take(2);
if (std::ranges::size(bytes) > 1) {
return *v.begin() + ((*(++v.begin()) & 0x0F) << 8);
} else {
return *v.begin();
}
}
// NOTE: it is assumed little-endian host's platform!!!
// return an range with least significant byte in the end of the range
template <std::ranges::output_range<unsigned char> R = std::vector<unsigned char>>
R convertUIntTo12Bit(uint16_t counts)
{
R res;
auto sp = std::span(reinterpret_cast<unsigned char*>(&counts), 2);
// least significant byte in the end of the output range
std::ranges::copy(sp | std::views::reverse, std::back_inserter(res));
return res;
}
std::string formatByteArr(const std::ranges::range auto& bytes, std::string_view delim = ", ")
requires std::integral<std::ranges::range_value_t<decltype(bytes)>>
{
std::string res;
using el_t = std::make_unsigned_t<std::ranges::range_value_t<decltype(bytes)>>;
auto sz = std::ranges::size(bytes);
if (!sz) {
return res;
}
for (el_t el : bytes | std::views::take(sz - 1)) {
res += std::format("0x{:02X}{}", el, delim);
}
res += std::format("0x{:02X}", *(bytes.end() - 1));
return res;
}
} // namespace details
/***********************************************************/
/* ======= RaptorEagleCCD CLASS IMPLEMENTATION ======= */
/***********************************************************/
#define DEFAULT_EPIX_VIDEO_FMT_FILE "raptor_eagle-v.fmt"
/* CONSTRUCTORS AND DESTRUCTOR */
RaptorEagleCCD::RaptorEagleCCD(const adc::traits::adc_input_char_range auto& epix_video_fmt_filename,
std::shared_ptr<spdlog::logger> logger)
: base_t("EagleCCD"),
adc::AdcSpdlogLogger(logger),
_epixFmtVideoFilename(),
_cameraUnitmap(1), // by default only the single camera
_clCommandAckBit(1), // enable by default (at camera boot up)
_clChecksumBit(1) // enable by default (at camera boot up)
{
addMarkToPattern("EAGLE-CCD");
std::ranges::copy(epix_video_fmt_filename, std::back_inserter(_epixFmtVideoFilename));
logDebug("CTOR: Create RaptorEagleCCD class instance");
if (_epixFmtVideoFilename.empty()) {
logInfo("Video format filename is not given! Use of default: {}", DEFAULT_EPIX_VIDEO_FMT_FILE);
} else {
logInfo("Set video format filename: {}", _epixFmtVideoFilename);
}
initAttrComm();
openPIXCI();
}
RaptorEagleCCD::RaptorEagleCCD(std::shared_ptr<spdlog::logger> logger)
: RaptorEagleCCD(std::string_view(), std::move(logger))
{
}
RaptorEagleCCD::~RaptorEagleCCD()
{
closePIXCI();
logDebug("DTOR: Delete RaptorEagleCCD class instance");
}
/* PUBLIC METHODS */
/* system state get/set */
std::bitset<8> RaptorEagleCCD::getSystemState()
{
std::lock_guard lock_guard(_camlinkMutex);
byte_seq_t ans;
clWrite({0x49});
clReadAndCheckAck(ans);
std::bitset<8> bits{ans[0]};
logDebug("Get system state as 0b{} bits", bits.to_string());
_clCommandAckBit = bits.test(CL_SYSTEM_STATUS_ACK_BIT) ? 1 : 0;
_clChecksumBit = bits.test(CL_SYSTEM_STATUS_CK_SUM_BIT) ? 1 : 0;
return bits;
}
void RaptorEagleCCD::setSystemState(const std::bitset<8>& bits)
{
std::lock_guard lock_guard(_camlinkMutex);
logDebug("Try to set system state to 0b{} bits", bits.to_string());
uint8_t status = static_cast<uint8_t>(bits.to_ulong());
clWrite({0x4F, status});
clReadAndCheckAck();
_clCommandAckBit = bits.test(CL_SYSTEM_STATUS_ACK_BIT) ? 1 : 0;
_clChecksumBit = bits.test(CL_SYSTEM_STATUS_CK_SUM_BIT) ? 1 : 0;
}
void RaptorEagleCCD::setSystemStateBit(const size_t pos)
{
std::lock_guard lock_guard(_camlinkMutex);
auto bits = getSystemState();
logDebug("Set system state bit {}", details::cl_system_status_bit(pos));
bits.set(pos);
setSystemState(bits);
}
void RaptorEagleCCD::clearSystemStateBit(const size_t pos)
{
std::lock_guard lock_guard(_camlinkMutex);
auto bits = getSystemState();
logDebug("Clear system state bit {}", details::cl_system_status_bit(pos));
bits.reset(pos);
setSystemState(bits);
}
void RaptorEagleCCD::flipSystemStateBit(const size_t pos)
{
std::lock_guard lock_guard(_camlinkMutex);
auto bits = getSystemState();
logDebug("Flip system state bit {}", details::cl_system_status_bit(pos));
bits.flip(pos);
setSystemState(bits);
}
// FPGA control register get/set
std::bitset<8> RaptorEagleCCD::getFPGAState()
{
std::lock_guard log_guard(_camlinkMutex);
auto ans = readRegisters({0x00});
std::bitset<8> bits{ans[0]};
logDebug("Get FPGA control register as 0b{} bits", bits.to_string());
return bits;
}
void RaptorEagleCCD::setFPGAState(const std::bitset<8>& bits)
{
std::lock_guard lock_guard(_camlinkMutex);
logDebug("Try to set FPGA control register to 0b{} bits", bits.to_string());
uint8_t status = static_cast<uint8_t>(bits.to_ulong());
writeRegisters({0x00}, {status});
}
void RaptorEagleCCD::setFPGAStateBit(const size_t pos)
{
std::lock_guard lock_guard(_camlinkMutex);
auto bits = getFPGAState();
logDebug("Set FPGA control register bit {}", details::cl_fpga_ctrl_reg_bit(pos));
bits.set(pos);
setFPGAState(bits);
}
void RaptorEagleCCD::clearFPGAStateBit(const size_t pos)
{
std::lock_guard lock_guard(_camlinkMutex);
auto bits = getFPGAState();
logDebug("Clear FPGA control register bit {}", details::cl_fpga_ctrl_reg_bit(pos));
bits.reset(pos);
setFPGAState(bits);
}
void RaptorEagleCCD::flipFPGAStateBit(const size_t pos)
{
std::lock_guard lock_guard(_camlinkMutex);
auto bits = getFPGAState();
logDebug("Flip FPGA control register bit {}", details::cl_fpga_ctrl_reg_bit(pos));
bits.flip(pos);
setFPGAState(bits);
}
std::bitset<8> RaptorEagleCCD::getTriggerRegister()
{
std::lock_guard log_guard(_camlinkMutex);
auto bytes = readRegisters({0xD4});
std::bitset<8> bits{bytes[0]};
logDebug("Get trigger register as 0b{}", bits.to_string());
return bits;
}
std::chrono::utc_clock::time_point RaptorEagleCCD::setTriggerRegister(const std::bitset<8> bits)
{
std::lock_guard lock_guard(_camlinkMutex);
logDebug("Try to set trigger register to 0b{} bits", bits.to_string());
uint8_t reg = static_cast<uint8_t>(bits.to_ulong());
auto tm = std::chrono::utc_clock::now();
writeRegisters({0xD4}, {reg});
return tm;
}
std::chrono::utc_clock::time_point RaptorEagleCCD::setTriggerRegisterBit(const size_t bit_pos)
{
std::lock_guard lock_guard(_camlinkMutex);
auto bits = getTriggerRegister();
logDebug("Try to set '{}' trigger register bit", details::cl_trigger_register_bit(bit_pos));
bits.set(bit_pos);
return setTriggerRegister(bits);
}
std::chrono::utc_clock::time_point RaptorEagleCCD::clearTriggerRegisterBit(const size_t bit_pos)
{
std::lock_guard lock_guard(_camlinkMutex);
auto bits = getTriggerRegister();
logDebug("Try to clear '{}' trigger register bit", details::cl_trigger_register_bit(bit_pos));
bits.reset(bit_pos);
return setTriggerRegister(bits);
}
std::chrono::utc_clock::time_point RaptorEagleCCD::flipTriggerRegisterBit(const size_t bit_pos)
{
std::lock_guard lock_guard(_camlinkMutex);
auto bits = getTriggerRegister();
logDebug("Try to flip '{}' trigger register bit", details::cl_trigger_register_bit(bit_pos));
bits.flip(bit_pos);
return setTriggerRegister(bits);
}
/* PRIVATE METHODS */
bool RaptorEagleCCD::initCamera(int unitmap)
{
logInfo("Try to init camera with unitmap: {} ...", unitmap);
if (unitmap < 0) {
throw std::system_error(RaptorEagleCCDError::ERROR_INVALID_UNITMAP);
}
_cameraUnitmap = unitmap;
// configure CameraLink serial connection
xclibApiCall(pxd_serialConfigure(_cameraUnitmap, 0, CL_DEFAULT_BAUD_RATE, CL_DEFAULT_DATA_BITS, 0,
CL_DEFAULT_STOP_BIT, 0, 0, 0),
std::format("pxd_serialConfigure({}, 0, {}, {}, 0, {}, 0, 0, 0)", _cameraUnitmap, CL_DEFAULT_BAUD_RATE,
CL_DEFAULT_DATA_BITS, CL_DEFAULT_STOP_BIT));
bool ok = resetFPGA();
if (!ok) {
logError("Cannot reboot FPGA!");
return ok;
}
// ok = resetMicro();
// if (!ok) {
// logError("Cannot reset microcontroller!");
// return ok;
// }
getSystemState();
getHardwareInfo();
getMicroVersion();
getFPGAVersion();
xclibApiCall(_dimCCD[0] = pxd_imageXdim(), "pxd_imageXdim()");
xclibApiCall(_dimCCD[1] = pxd_imageYdim(), "pxd_imageYdim()");
xclibApiCall(_bitsPerPixel = pxd_imageBdim(), "pxd_imageBdim()");
xclibApiCall(_imageFrameBuffNumber = pxd_imageZdim(), "pxd_imageZdim()");
logDebug("------- CCD and grabber hardware info -------");
logDebug("CCD full-frame dimension [{}, {}] pixels", _dimCCD[0], _dimCCD[1]);
logDebug("CCD bits per pixel: {}", _bitsPerPixel);
logDebug("Number of grabber image framebuffers: {}", _imageFrameBuffNumber);
logDebug("-----------------------------------------------");
logDebug("Set initial state (IDLE, full frame, binning to 1x1) ...");
(*this)[CAMERA_ATTR_XBIN] = 1;
(*this)[CAMERA_ATTR_YBIN] = 1;
(*this)[CAMERA_ATTR_ROI_STARTX] = 0; // in CCD notation (started from 0)!!!
(*this)[CAMERA_ATTR_ROI_STARTY] = 0; // in CCD notation (started from 0)!!!
(*this)[CAMERA_ATTR_ROI_HEIGHT] = 0; // ??!!!!
(*this)[CAMERA_ATTR_ROI_WIDTH] = _dimCCD[0];
(*this)[CAMERA_ATTR_ROI_HEIGHT] = _dimCCD[1];
(*this)[CAMERA_ATTR_READ_MODE] = CAMERA_ATTR_READ_MODE_NORMAL;
(*this)[CAMERA_ATTR_READ_RATE] = CAMERA_ATTR_READ_RATE_FAST;
// IDLE mode
(*this)[CAMERA_ATTR_TRIGGER_MODE] = CAMERA_ATTR_TRIGGER_MODE_IDLE;
// clearTriggerRegisterBit(CL_TRIGGER_MODE_EXT_TRIGGER_BIT);
// clearTriggerRegisterBit(CL_TRIGGER_MODE_CONTINUOUS_SEQ_BIT);
// setTriggerRegisterBit(CL_TRIGGER_MODE_ABORT_CURRENT_EXP_BIT);
logInfo("Camera with unitmap '{}' is initialized", _cameraUnitmap);
return true;
}
void RaptorEagleCCD::openPIXCI()
{
logDebug("Initialize EPIX library and camera system device ...");
if (_epixFmtVideoFilename.size()) {
xclibApiCall(pxd_PIXCIopen("", nullptr, _epixFmtVideoFilename.c_str()),
std::format("pxd_PIXCIopen(\"\", NULL, {})", _epixFmtVideoFilename));
} else {
xclibApiCall(pxd_PIXCIopen("", "DEFAULT", ""), "pxd_PIXCIopen(\"\", \"DEFAULT\", \"\")");
// #include DEFAULT_EPIX_VIDEO_FMT_FILE // exported from XCAP (Linux 64-bit!): bin 1x1, full CCD frame
#include "raptor_eagle-v.fmt" // exported from XCAP (Linux 64-bit!): bin 1x1, full CCD frame
pxd_videoFormatAsIncludedInit(0);
xclibApiCall(pxd_videoFormatAsIncluded(0), "pxd_videoFormatAsIncluded(0)");
}
}
void RaptorEagleCCD::closePIXCI()
{
logDebug("Close EPIX library and camera system device ...");
// no exception here!!!
xclibApiCall<true>(pxd_PIXCIclose(), "pxd_PIXCIclose()");
}
/* CameraLink-RELATED METHODS */
size_t RaptorEagleCCD::clRead(byte_seq_t& bytes)
{
std::lock_guard lock_guard(_camlinkMutex);
size_t nbytes;
auto start_tp = std::chrono::steady_clock::now();
// how many byte are available
xclibApiCall(nbytes = pxd_serialRead(_cameraUnitmap, 0, nullptr, 0),
std::format("pxd_serialRead({}, 0, NULL, 0)", _cameraUnitmap));
if (!nbytes) {
logWarn("There are no bytes in Rx-buffer! Polling buffer during {} ...", CL_DEFAULT_TIMEOUT);
while ((std::chrono::steady_clock::now() - start_tp) <= CL_DEFAULT_TIMEOUT) {
std::this_thread::sleep_for(std::chrono::milliseconds(5));
nbytes = pxd_serialRead(_cameraUnitmap, 0, nullptr, 0);
if (nbytes) {
break;
}
}
if (!nbytes) {
// logWarn("Cameralink reading operation timeout!");
// return 0;
throw std::system_error(RaptorEagleCCDError::ERROR_CAMLINK_READ_TIMEOUT);
}
// here the call is only for logging purpose
xclibApiCall(nbytes = pxd_serialRead(_cameraUnitmap, 0, nullptr, 0),
std::format("pxd_serialRead({}, 0, NULL, 0)", _cameraUnitmap));
}
// nbytes += _clCommandAckBit + _clChecksumBit;
if (bytes.size() < nbytes) {
bytes.resize(nbytes);
}
xclibApiCall(pxd_serialRead(_cameraUnitmap, 0, (char*)bytes.data(), nbytes),
std::format("pxd_serialRead({}, 0, {}, {}) -> [{}]", _cameraUnitmap, (void*)bytes.data(), nbytes,
details::formatByteArr(bytes | std::views::take(nbytes))));
// if (_loggerSPtr->level() == spdlog::level::trace) {
// std::string s;
// adc::utils::AdcCharRangeFromValueRange(s, bytes, std::string_view(", "));
// logTrace("Received from controller: [{}]", s);
// }
return nbytes;
}
size_t RaptorEagleCCD::clReadAndCheckAck(byte_seq_t& bytes)
{
std::lock_guard lock_guard(_camlinkMutex);
auto nbytes = clRead(bytes);
if (_clCommandAckBit && nbytes) {
// auto ack = *(bytes.end() - 1 - _clChecksumBit);
auto ack = *(bytes.begin() + nbytes - 1 - _clChecksumBit);
if (ack != CL_ETX) {
// throw std::system_error(std::error_code(ack, RaptorEagleControllerErrorCategory::get()));
throw std::system_error(ack, RaptorEagleControllerErrorCategory::get());
}
}
return nbytes;
}
size_t RaptorEagleCCD::clReadAndCheckAck()
{
byte_seq_t bytes;
return clReadAndCheckAck(bytes);
}
// 'bytes' must contain only data without trailing ETX and checksum bytes!
size_t RaptorEagleCCD::clWrite(const byte_seq_t& bytes)
{
std::lock_guard lock_guard(_camlinkMutex);
static unsigned char etx_checksum_bytes[] = {CL_ETX, 0xFF};
if (bytes.empty()) {
logWarn("An empty transmitted byte sequence! Nothing to do!");
return 0;
}
// if (_loggerSPtr->level() == spdlog::level::trace) {
// std::string s;
// adc::utils::AdcCharRangeFromValueRange(s, bytes, std::string_view(", "));
// logTrace("Send to controller: [{}]", s);
// }
size_t nbytes, tr_nbytes = 1 + _clChecksumBit;
// how many bytes are available in Tx-buffer
xclibApiCall(nbytes = pxd_serialWrite(_cameraUnitmap, 0, nullptr, 0),
std::format("pxd_serialWrite({}, 0, NULL, 0)", _cameraUnitmap));
if (nbytes) {
if (nbytes < (bytes.size() + tr_nbytes)) {
logWarn(
"Not enough of available space in the internal Tx-buffer (needs = {}, available = {})! Nothing to do!",
bytes.size() + tr_nbytes, nbytes);
return 0;
} else {
if (_clChecksumBit) {
etx_checksum_bytes[1] = details::computeChecksum(bytes);
}
xclibApiCall(nbytes = pxd_serialWrite(_cameraUnitmap, 0, (char*)bytes.data(), bytes.size()),
std::format("pxd_serialWrite({}, 0, [{}], {})", _cameraUnitmap, details::formatByteArr(bytes),
bytes.size()));
// xclibApiCall(
// nbytes = pxd_serialWrite(_cameraUnitmap, 0, (char*)bytes.data(), bytes.size()),
// std::format("pxd_serialWrite({}, 0, {}, {})", _cameraUnitmap, (void*)bytes.data(), bytes.size()));
// send trailing ETX and possible checksum bytes
if (tr_nbytes > 1) {
logDebug("Write trailing ETX and checksum bytes");
} else {
logDebug("Write trailing ETX byte");
}
xclibApiCall(pxd_serialWrite(_cameraUnitmap, 0, (char*)etx_checksum_bytes, tr_nbytes),
std::format("pxd_serialWrite({}, 0, [{}], {})", _cameraUnitmap,
details::formatByteArr(std::string_view((const char*)etx_checksum_bytes, 2) |
std::views::take(tr_nbytes)),
tr_nbytes));
// xclibApiCall(
// pxd_serialWrite(_cameraUnitmap, 0, (char*)etx_checksum_bytes, tr_nbytes),
// std::format("pxd_serialWrite({}, 0, {}, {})", _cameraUnitmap, (void*)etx_checksum_bytes, tr_nbytes));
}
} else {
logWarn("No available space in the internal Tx-buffer! Nothing to do!");
}
return bytes.size();
}
RaptorEagleCCD::byte_seq_t RaptorEagleCCD::readRegisters(const RaptorEagleCCD::byte_seq_t& addrs,
byte_seq_t set_addr_cmd)
{
// to protect in multi-threading environment (multiple read-write operations, see below)
std::lock_guard lock_guard(_camlinkMutex);
byte_seq_t reg_vals, ans(3);
if (addrs.empty()) {
logWarn("Registers addresses array is an empty! Nothing to do!");
return reg_vals;
}
// from Eagle V 4240 instruction manual (rev 1.1)
byte_seq_t set_addr_comm = std::move(set_addr_cmd); // set-address controller command
static const byte_seq_t read_reg_comm{0x53, 0xE1, 0x01}; // read-register controller command
reg_vals.resize(addrs.size());
size_t i = 0;
for (auto& addr : addrs) {
// set address
set_addr_comm[3] = addr;
clWrite(set_addr_comm);
clReadAndCheckAck(ans);
// get value
clWrite(read_reg_comm);
clReadAndCheckAck(ans);
reg_vals[i++] = ans[0];
}
return reg_vals;
}
void RaptorEagleCCD::writeRegisters(const byte_seq_t& addrs, const byte_seq_t& values)
{
// to protect in multi-threading environment (multiple read-write operations, see below)
std::lock_guard lock_guard(_camlinkMutex);
if (addrs.empty() || values.empty()) {
logWarn("Registers addresses or values array is an empty! Nothing to do!");
return;
}
size_t N = addrs.size() < values.size() ? addrs.size() : values.size();
// from Eagle V 4240 instruction manual (rev 1.1)
byte_seq_t comm{0x53, 0xE0, 0x02, 0x00, 0x00};
for (size_t i = 0; i < N; ++i) {
comm[3] = addrs[i];
comm[4] = values[i];
clWrite(comm);
clReadAndCheckAck(); // no data from controller here just check answer for errors
}
}
/* RESET HARDWARE */
bool RaptorEagleCCD::resetMicro(const std::chrono::milliseconds& timeout)
{
std::lock_guard lock_guard(_camlinkMutex);
std::chrono::milliseconds tm = timeout;
if (tm < MICRO_RESET_TIME_CONSTANT) { // must be greater than ~100ms
logWarn("Microcontroller reset timeout must be greater than {}", MICRO_RESET_TIME_CONSTANT);
logWarn("Use of default value {}", MICRO_RESET_DEFAULT_TIMEOUT);
tm = std::chrono::milliseconds(MICRO_RESET_DEFAULT_TIMEOUT);
}
byte_seq_t ack(1);
std::chrono::milliseconds::rep cnt = (tm - MICRO_RESET_TIME_CONSTANT).count();
std::chrono::milliseconds sleep_dur =
cnt > 10 ? std::chrono::milliseconds(cnt / 10) : std::chrono::milliseconds(10);
uint8_t cksum_old = _clChecksumBit;
_clChecksumBit = 1; // to compute mandatory checksum in clWrite below!
clWrite({0x55, 0x99, 0x66, 0x11}); // no response here
_clChecksumBit = cksum_old; // restore
// according to instruction manual rev 1.1 microcontroller will take near 100msecs to reset
std::this_thread::sleep_for(std::chrono::milliseconds(100));
// poll controller
auto start = std::chrono::steady_clock::now();
do {
// poll camera with 'set-system-status'
clWrite({0x4F, 0x51});
// clWrite({0x4F, 0x50});
std::this_thread::sleep_for(sleep_dur);
clRead(ack);
if (ack[0] == CL_ETX) {
logInfo("Camera microcontroller is reset successfully!");
return true;
}
} while ((std::chrono::steady_clock::now() - start) < timeout);
return false;
}
bool RaptorEagleCCD::resetFPGA(const std::chrono::milliseconds& timeout)
{
std::lock_guard lock_guard(_camlinkMutex);
std::chrono::milliseconds tm = timeout;
if (tm < FPGA_RESET_TIME_CONSTANT) { // must be greater than ~100ms
logWarn("FPGA reset timeout must be greater than {} millisecs", FPGA_RESET_TIME_CONSTANT.count());
logWarn("Use of default value {}", FPGA_RESET_DEFAULT_TIMEOUT);
tm = std::chrono::milliseconds(FPGA_RESET_DEFAULT_TIMEOUT);
}
byte_seq_t ack;
std::chrono::milliseconds::rep cnt = (tm - FPGA_RESET_TIME_CONSTANT).count();
std::chrono::milliseconds sleep_dur =
cnt > 10 ? std::chrono::milliseconds(cnt / 10) : std::chrono::milliseconds(10);
// clearSystemStateBit(CL_SYSTEM_STATUS_FPGA_RST_HOLD_BIT); // set bit to 0 to hold FPGA in reset state
clWrite({0x4F, 0x52});
clRead(ack); // ignore answer
std::this_thread::sleep_for(std::chrono::milliseconds(200));
clWrite({0x4F, 0x50});
clRead(ack); // ignore answer
// setSystemStateBit(CL_SYSTEM_STATUS_FPGA_RST_HOLD_BIT); // set bit to 1 to boot FPGA
clWrite({0x4F, 0x52});
clRead(ack); // ignore answer
// according to instruction manual rev 1.1 FPGA will take approximately 500msecs to reset
std::this_thread::sleep_for(std::chrono::milliseconds(500));
// poll controller
auto start = std::chrono::steady_clock::now();
do {
clWrite({0x49});
std::this_thread::sleep_for(sleep_dur);
clRead(ack);
auto bits = std::bitset<8>(ack[0]);
if (bits.test(CL_SYSTEM_STATUS_FPGA_BOOT_OK_BIT)) {
// logInfo("bits = {}", bits.to_string());
logInfo("Camera FPGA is reset successfully!");
return true;
}
} while ((std::chrono::steady_clock::now() - start) < timeout);
return false;
}
/* HARDWARE INFO */
void RaptorEagleCCD::getHardwareInfo()
{
std::lock_guard lock_guard(_camlinkMutex);
logDebug("Try to get manufacturer EPROM data ...");
// first, according to instruction manual, set FPGA comms bit
setSystemStateBit(CL_SYSTEM_STATUS_FPGA_EEPROM_COMMS_BIT);
// get manufacturer data
clWrite({0x53, 0xAE, 0x05, 0x01, 0x00, 0x00, 0x02, 0x00});
clReadAndCheckAck();
clWrite({0x53, 0xAF, 0x12});
clReadAndCheckAck(_manufacturerData);
_buildDate =
std::chrono::year_month_day(std::chrono::year(2000 + _manufacturerData[4]) /
std::chrono::month(_manufacturerData[3]) / std::chrono::day(_manufacturerData[2]));
logDebug("------- Manufacturer data -------");
logDebug("Camerial serial number: {}", _cameraSerialNumber);
logDebug("Build date: {}", _buildDate);
logDebug("Build code: {}", _buildCode);
// ADC calibration data
double cnt1 = *reinterpret_cast<uint16_t*>(_manufacturerData.data() + 10); // at 0C
double cnt2 = *reinterpret_cast<uint16_t*>(_manufacturerData.data() + 12); // at +40C
logDebug("");
logDebug("ADC calib data [{}, {}] counts at [{}C, {}C]", _adcCCDTempCalibData[0], _adcCCDTempCalibData[1],
ADC_CALIBRATION_POINT_1, ADC_CALIBRATION_POINT_2);
// compute linear relation: Temp = k*ADC + b
_adcCCDTempCalibCoeffs[0] = (ADC_CALIBRATION_POINT_2 - ADC_CALIBRATION_POINT_1) / (cnt2 - cnt1); // k
_adcCCDTempCalibCoeffs[1] = ADC_CALIBRATION_POINT_2 - _adcCCDTempCalibCoeffs[0] * cnt2;
logDebug("Computed ADC-to-Temp linear relation: Temp(C) = {:7.4f}*ADC(counts) + {:6.2f}", _adcCCDTempCalibCoeffs[0],
_adcCCDTempCalibCoeffs[1]);
logDebug("");
logDebug("DAC calib data [{}, {}] counts at [{}C, {}C]", _dacTECSetPointCalibData[0], _dacTECSetPointCalibData[1],
DAC_CALIBRATION_POINT_1, DAC_CALIBRATION_POINT_2);
cnt1 = *reinterpret_cast<uint16_t*>(_manufacturerData.data() + 14); // at 0C
cnt2 = *reinterpret_cast<uint16_t*>(_manufacturerData.data() + 16); // at +40C
_dacTECSetPointCalibCoeffs[0] = (DAC_CALIBRATION_POINT_2 - DAC_CALIBRATION_POINT_1) / (cnt2 - cnt1);
_dacTECSetPointCalibCoeffs[1] = DAC_CALIBRATION_POINT_2 - _dacTECSetPointCalibCoeffs[0] * cnt2;
if (_dacTECSetPointCalibCoeffs[1] > 0.0) {
logDebug("Computed DAC-to-Temp linear relation: Temp(C) = {:7.4f}*DAC(counts) + {:6.2f}",
_dacTECSetPointCalibCoeffs[0], _dacTECSetPointCalibCoeffs[1]);
} else {
logDebug("Computed DAC-to-Temp linear relation: Temp(C) = {:7.4f}*DAC(counts) - {:6.2f}",
_dacTECSetPointCalibCoeffs[0], std::abs(_dacTECSetPointCalibCoeffs[1]));
}
_dacTECSetPointCalibCoeffs[2] = (cnt2 - cnt1) / (DAC_CALIBRATION_POINT_2 - DAC_CALIBRATION_POINT_1);
_dacTECSetPointCalibCoeffs[3] = cnt2 - _dacTECSetPointCalibCoeffs[2] * DAC_CALIBRATION_POINT_2;
logDebug("Computed Temp-to-Dac linear relation: DAC(counts) = {}*Temp(C) + {}", _dacTECSetPointCalibCoeffs[2],
_dacTECSetPointCalibCoeffs[3]);
logDebug("---------------------------------");
clearSystemStateBit(CL_SYSTEM_STATUS_FPGA_EEPROM_COMMS_BIT);
}
void RaptorEagleCCD::getMicroVersion()
{
std::lock_guard lock_guard(_camlinkMutex);
logDebug("Try to get microcontroller version ...");
clWrite({0x56});
clReadAndCheckAck(_microVersion);
logDebug("Microcontroller version: {}.{}", _microVersion[0], _microVersion[1]);
}
void RaptorEagleCCD::getFPGAVersion()
{
std::lock_guard lock_guard(_camlinkMutex);
logDebug("Try to get FPGA version ...");
_FPGAVersion = readRegisters({0x7E, 0x7F});
logDebug("FPGA version: {}.{}", _FPGAVersion[0], _FPGAVersion[1]);
}
/* ACQUISITION PROCESS */
void RaptorEagleCCD::startAquisition()
{
if (AcquisitionProcess::isAcqInProgress) {
logError("Acquisition is in progress! Exit!");
throw std::system_error(RaptorEagleCCDError::ERROR_ACQUISITION_IN_PROGRESS);
}
// auto bytes = readRegisters({0xD4}); // trigger mode register
// std::bitset<8> bits(bytes[0]);
auto bits = getTriggerRegister();
if (bits.test(CL_TRIGGER_MODE_EXT_TRIGGER_BIT)) {
logError("External trigger mode is set! Nothing to do, exit!");
throw std::system_error(RaptorEagleCCDError::ERROR_EXT_TRIGGER_MODE);
}
logInfo("Start acquisition process ...");
auto acq_pars = std::make_shared<acq_params_t>(acq_params_t({
.startTime = std::chrono::utc_clock::time_point(),
.abortTime = std::chrono::utc_clock::time_point(),
.saveInAbort = false,
.expTime = (*this)[CAMERA_ATTR_EXPTIME],
.roiStartX = (*this)[CAMERA_ATTR_ROI_STARTX], // in CCD pixels (start from 0)
.roiStartY = (*this)[CAMERA_ATTR_ROI_STARTY], // in CCD pixels (start from 0)
.roiWidth = (*this)[CAMERA_ATTR_ROI_WIDTH], // in binned pixels
.roiHeight = (*this)[CAMERA_ATTR_ROI_HEIGHT], // in binned pixels
.binX = (*this)[CAMERA_ATTR_XBIN],
.binY = (*this)[CAMERA_ATTR_YBIN],
.shutterState = (*this)[CAMERA_ATTR_SHUTTER_STATE],
.readRate = (*this)[CAMERA_ATTR_READ_RATE],
.readMode = (*this)[CAMERA_ATTR_READ_MODE],
.gain = (*this)[CAMERA_ATTR_GAIN],
.ccdTemp = (*this)[CAMERA_ATTR_CCD_TEMP],
.tecSetPoint = (*this)[CAMERA_ATTR_TECPOINT],
.tecState = (*this)[CAMERA_ATTR_TECSTATE] == CAMERA_ATTR_TECSTATE_ON ? true : false,
.pcbTemp = (*this)[CAMERA_ATTR_PCB_TEMP],
.filename = (*this)[CAMERA_ATTR_FITS_FILENAME],
.templateFilename = (*this)[CAMERA_ATTR_FITS_TEMPLATE],
.permanentKeywords = _permanentFitsKeywords, // copy
.currentKeywords = std::move(_currentFitsKeywords) // move!!!
}));
// adjust geometry
auto dv = std::div(_dimCCD[0] - acq_pars->roiStartX, acq_pars->binX);
auto width_max = dv.quot + (dv.rem ? 1 : 0);
dv = std::div(_dimCCD[1] - acq_pars->roiStartY, acq_pars->binY);
auto height_max = dv.quot + (dv.rem ? 1 : 0);
if (acq_pars->roiWidth > width_max) {
acq_pars->roiWidth = width_max;
logDebug("Adjust ROI width to {}", acq_pars->roiWidth);
(*this)[CAMERA_ATTR_ROI_WIDTH] = width_max;
}
if (acq_pars->roiHeight > height_max) {
acq_pars->roiHeight = height_max;
logDebug("Adjust ROI height to {}", acq_pars->roiHeight);
(*this)[CAMERA_ATTR_ROI_HEIGHT] = height_max;
}
std::lock_guard lock_guard(_acqProcessesMutex);
auto sptr = std::make_shared<AcquisitionProcess>(this);
for (auto it = _acqProcesses.begin(); it != _acqProcesses.end();) {
if (it->expired()) {
it = _acqProcesses.erase(it);
} else {
break;
}
}
_acqProcesses.emplace_back(sptr);
// arm grabber here
sptr->start(acq_pars);
// bits.set(CL_TRIGGER_MODE_SNAPSHOT_BIT); // start snapshot bit
// bytes[0] = static_cast<uint8_t>(bits.to_ulong());
// acq_pars->startTime = std::chrono::utc_clock::now();
// writeRegisters({0xD4}, bytes); // write to trigger mode register (start snapshot)
// start acquisition here
acq_pars->startTime = setTriggerRegisterBit(CL_TRIGGER_MODE_SNAPSHOT_BIT);
int status;
xclibApiCall(status = pxd_goneLive(_cameraUnitmap, 0), std::format("pxd_goneLive({}, 0)", _cameraUnitmap));
if (status == 0) {
logError("CANNOT START ACQUIRING!!!");
}
}
void RaptorEagleCCD::stopAcquisition(bool save_acq)
{
std::lock_guard lock_guard(_acqProcessesMutex);
for (auto it = _acqProcesses.begin(); it != _acqProcesses.end();) {
if (it->expired()) {
it = _acqProcesses.erase(it);
} else {
auto sptr = it->lock();
sptr->stop(save_acq);
return; // there was only the single active aquisition, so exit here!
}
}
logWarn("Stop acquisition is asked but there is no active one! Ignore!");
}
/* CREATE COMMANDS AND ATTRIBUTES */
void RaptorEagleCCD::initAttrComm()
{
logDebug("Try to create attributes and commands ...");
auto comp_case_ignore = [](const auto& v1, const auto& v2) { return std::toupper(v1) == v2; };
// helper to setup 8-bit register attributes
// 'validator' is a callable with signature: std::pair<uchar, std::string> validator(const uchar&)
auto create8BitAttr = [this](attr_ident_t name, auto reg_addr, auto&& validator, std::string_view log_mark) {
return RaptorEagleCCD::attribute_t::makeArithAttr(
name,
[this, reg_addr, log_mark]() {
auto bytes = readRegisters(reg_addr);
logTrace("Return {} (current value: {})", log_mark, bytes[0]);
return bytes[0];
},
[this, reg_addr, log_mark,
wrapper =
adc::traits::adc_pf_wrapper(std::forward<decltype(validator)>(validator))](const uchar& val) mutable {
logDebug("Try to set {} to {} ...", log_mark, val);
// call perfectly-forwarded validator
auto v_res = std::forward<std::tuple_element_t<0, decltype(wrapper)>>(std::get<0>(wrapper))(val);
if (v_res.second.size()) { // warning
logWarn("{}", v_res.second);
}
writeRegisters(reg_addr, {v_res.first});
logDebug("{} is set to {}", log_mark, v_res.first);
});
};
// helper to setup 12-bit register attributes
// 'validator' is a callable with signature: std::pair<uint16_t, std::string> validator(const uint16_t&)
auto create12BitAttr = [this](attr_ident_t name, auto reg_addrs, auto&& validator, std::string_view log_mark) {
return RaptorEagleCCD::attribute_t::makeArithAttr(
name,
[this, reg_addrs, log_mark]() {
auto bytes = readRegisters(reg_addrs);
uint16_t v = details::convert12BitToUInt(bytes);
logTrace("Return {} (current value: {})", log_mark, v);
return v;
},
[this, reg_addrs, log_mark,
wrapper = adc::traits::adc_pf_wrapper(std::forward<decltype(validator)>(validator))](
const uint16_t& val) mutable {
logDebug("Try to set {} to {} ...", log_mark, val);
// call perfectly-forwarded validator
auto v_res = std::forward<std::tuple_element_t<0, decltype(wrapper)>>(std::get<0>(wrapper))(val);
if (v_res.second.size()) { // warning
logWarn("{}", v_res.second);
}
auto bytes = details::convertUIntTo12Bit(v_res.first);
writeRegisters(reg_addrs, bytes);
logDebug("{} is set to {}", log_mark, v_res.first);
});
};
/* ------- COMMANDS ------- */
addCommand(CAMERA_CMD_INITCAM, [this]() {
logDebug("Try to execute '{}' command", CAMERA_CMD_INITCAM);
initCamera();
});
addCommand(CAMERA_CMD_START_EXP, [this]() {
logDebug("Try to execute '{}' command", CAMERA_CMD_START_EXP);
startAquisition();
});
addCommand(CAMERA_CMD_STOP_EXP, [this]() {
logDebug("Try to execute '{}' command", CAMERA_CMD_STOP_EXP);
stopAcquisition(true);
});
addCommand(CAMERA_CMD_ABORT_EXP, [this]() {
logDebug("Try to execute '{}' command", CAMERA_CMD_ABORT_EXP);
stopAcquisition(false);
});
addCommand(CAMERA_CMD_CLEAR_PERM_KEYW, [this]() {
logDebug("Try to execute '{}' command", CAMERA_CMD_CLEAR_PERM_KEYW);
auto N = _permanentFitsKeywords.size();
_permanentFitsKeywords.clear();
logInfo("Permanent FITS keywords are deleted! ({} keywords were cleared)", N);
});
addCommand(CAMERA_CMD_START_RESET_MICRO, [this]() {
logDebug("Try to execute '{}' command", CAMERA_CMD_START_RESET_MICRO);
if (resetMicro())
return;
throw std::system_error(RaptorEagleCCDError::ERROR_CANNOT_RESET_MICRO);
});
addCommand(CAMERA_CMD_START_RESET_FPGA, [this]() {
logDebug("Try to execute '{}' command", CAMERA_CMD_START_RESET_FPGA);
if (resetFPGA())
return;
throw std::system_error(RaptorEagleCCDError::ERROR_CANNOT_RESET_FPGA);
});
/* ------- ATTRIBUTES ------- */
/* CURRENT FITS IMAGE FILENAME AND ITS HEADER TEMPLATE, PERMANENT AND CURRENT USER FITS KEYWORDS */
addAttribute(
CAMERA_ATTR_FITS_FILENAME,
[this]() {
logTrace("Return current FITS-image filename as {}", _currentFitsFile);
return _currentFitsFile;
},
[this](const std::string& filename) {
logDebug("Set current FITS-image filename to {}", filename);
if (filename.empty()) {
logWarn("An empty FITS filename! Acquisition process is disabled!");
}
_currentFitsFile = filename;
});
addAttribute(
CAMERA_ATTR_FITS_TEMPLATE,
[this]() {
logTrace("Return current FITS-image header template filename as {}", _currentTemplateFile);
return _currentTemplateFile;
},
[this](const std::string& filename) {
logDebug("Set current FITS-image header template filename to {}", filename);
_currentTemplateFile = filename;
});
// NOTE: setter and deserializer adds keywords to the end of current array!!!
addAttribute(
CAMERA_ATTR_PERM_KEYW,
[this]() {
auto N = _permanentFitsKeywords.size();
logTrace("Return permanent FITS keywords ({} keys)", N);
return _permanentFitsKeywords;
},
[this](const std::vector<std::string>& keys) {
logInfo("Add permanent FITS keywords to current array ({} keys)", keys.size());
for (auto& key : keys) {
logTrace("\tadd keyword record: |{}|", key);
_permanentFitsKeywords.push_back(key);
}
},
[](const std::vector<std::string>& keys) { // serialize as "USER_FITS_KEY_SEP_SEQ" separated char sequences
attribute_t::serialized_t res;
if (keys.size() > 1) {
for (auto& key : keys) {
std::ranges::copy(key, std::back_inserter(res));
std::ranges::copy(USER_FITS_KEY_SEP_SEQ, std::back_inserter(res));
}
} else {
std::ranges::copy(keys.front(), std::back_inserter(res));
}
return res;
},
[](const attribute_t::serialized_t& char_seq) {
std::vector<std::string> keys;
for (auto const& key : char_seq | std::views::split(USER_FITS_KEY_SEP_SEQ)) {
keys.push_back({key.begin(), key.end()});
}
return keys;
});
// NOTE: setter and deserializer adds keywords to the end of current array!!!
addAttribute(
CAMERA_ATTR_CURR_KEYW,
[this]() {
auto N = _currentFitsKeywords.size();
logTrace("Return current FITS keywords ({} keys)", N);
return _currentFitsKeywords;
},
[this](const std::vector<std::string>& keys) {
logInfo("Add current FITS keywords to current array ({} keys)", keys.size());
for (auto& key : keys) {
logTrace("\tadd keyword record: |{}|", key);
_currentFitsKeywords.push_back(key);
}
},
[](const std::vector<std::string>& keys) { // serialize as "USER_FITS_KEY_SEP_SEQ" separated char sequences
attribute_t::serialized_t res;
if (keys.size() > 1) {
for (auto& key : keys) {
std::ranges::copy(key, std::back_inserter(res));
std::ranges::copy(USER_FITS_KEY_SEP_SEQ, std::back_inserter(res));
}
} else {
std::ranges::copy(keys.front(), std::back_inserter(res));
}
return res;
},
[](const attribute_t::serialized_t& char_seq) {
std::vector<std::string> keys;
for (auto const& key : char_seq | std::views::split(USER_FITS_KEY_SEP_SEQ)) {
keys.push_back({key.begin(), key.end()});
}
return keys;
});
/* EXPOSURE AND FRAMERATE */
// exposure time
addAttribute(RaptorEagleCCD::attribute_t::makeArithAttr(
CAMERA_ATTR_EXPTIME,
[this]() {
auto bytes = readRegisters(CL_EXPTIME_ADDR);
size_t counts = details::convert40BitToCounts(bytes);
double exp_time = counts * 2.5E-8; // counts of 25nsec ticks
logTrace("Return acquision duration (current value is {} seconds ({} 25nsec ticks))", exp_time, counts);
return exp_time;
},
[this](const double& exp_time) {
logDebug("Try to set acquisition duration to {} seconds ...", exp_time);
double etime;
if (exp_time < 0.0) {
logWarn("Acquisition duration must be non-negative!");
etime = 0.0;
} else if (exp_time > EAGLE_CAMERA_MAX_EXPTIME) {
logWarn("Acquisition duration must not be greater than {} seconds!", EAGLE_CAMERA_MAX_EXPTIME);
etime = EAGLE_CAMERA_MAX_EXPTIME;
} else {
etime = exp_time;
}
size_t counts = static_cast<size_t>(std::round(etime / 2.5E-8));
auto bytes = details::convertCountsTo40Bit(counts);
writeRegisters(CL_EXPTIME_ADDR, bytes);
logDebug("Acquisition duration is set to {} second ({} 25nsec ticks)", etime, counts);
}));
// frame rate
addAttribute(RaptorEagleCCD::attribute_t::makeArithAttr(
CAMERA_ATTR_FRAME_RATE,
[this]() {
auto bytes = readRegisters(CL_FRAMERATE_ADDR);
size_t counts = details::convert40BitToCounts(bytes);
size_t rate = counts * 40; // in MHz
logTrace("Return frame rate (current value is {} MHz ({} 40MHz ticks))", rate, counts);
return rate;
},
[this](const size_t& rate) {
logDebug("Try to set frame rate to {} MHz ...", rate);
size_t r;
if (rate < 0) {
logWarn("Frame rate must be non-negative!");
r = 0;
} else if (rate > EAGLE_CAMERA_MAX_FRAMERATE) {
logWarn("Frame rate must not be greater than {} MHz!", EAGLE_CAMERA_MAX_FRAMERATE);
r = EAGLE_CAMERA_MAX_FRAMERATE;
} else {
r = rate;
}
size_t counts = r / 40;
auto bytes = details::convertCountsTo40Bit(counts);
writeRegisters(CL_FRAMERATE_ADDR, bytes);
logDebug("Frame rate is set to {} MHz ({} 40MHz ticks)", r, counts);
}));
// number of exposures
addAttribute(RaptorEagleCCD::attribute_t::makeArithAttr(
CAMERA_ATTR_NEXP,
[this]() -> size_t {
logTrace("Return number of frames in acquisition sequence (current value is {})", _frameNumbers.load());
return _frameNumbers;
},
[this](const size_t& nframes) {
_frameNumbers = nframes;
logDebug("Number of frames in acquisition sequence is set to {}", _frameNumbers.load());
}));
/* FRAME GEOMETRY RELATED ATTRIBUTES */
// ROI left
addAttribute(create12BitAttr(
CAMERA_ATTR_ROI_STARTX, CL_ROI_STARTX_ADDR,
[this]<typename T>(const T& val) { // validator
std::pair<T, std::string> res{val, ""};
// if (val < 1) {
// res.first = 1;
// res.second = "The ROI X-offset must start from 1 (FITS notation)";
// } else if (val > _dimCCD[0]) {
// res.first = _dimCCD[0];
// res.second = std::format(
// "The ROI X-offset must not be greater than CCD X-dimension of {} pixels (FITS notation)",
// _dimCCD[0]);
// }
if (val >= _dimCCD[0]) {
res.first = _dimCCD[0] - 1;
res.second =
std::format("The ROI X-offset must be lesser than CCD X-dimension of {} pixels", _dimCCD[0]);
}
return res;
},
"ROI X-offset"));
// ROI top
addAttribute(create12BitAttr(
CAMERA_ATTR_ROI_STARTY, CL_ROI_STARTY_ADDR,
[this]<typename T>(const T& val) { // validator
std::pair<T, std::string> res{val, ""};
// if (val < 1) {
// res.first = 1;
// res.second = "The ROI Y-offset must start from 1 (FITS notation)";
// } else if (val > _dimCCD[1]) {
// res.first = _dimCCD[1];
// res.second = std::format(
// "The ROI Y-offset must not be greater than CCD Y-dimension of {} pixels (FITS notation)",
// _dimCCD[1]);
// }
if (val >= _dimCCD[1]) {
res.first = _dimCCD[1] - 1;
res.second =
std::format("The ROI Y-offset must be lesser than CCD Y-dimension of {} pixels", _dimCCD[1]);
}
return res;
},
"ROI Y-offset"));
// ROI width
addAttribute(create12BitAttr(
CAMERA_ATTR_ROI_WIDTH, CL_ROIWIDTH_ADDR,
[this]<typename T>(const T& val) { // validator
std::pair<T, std::string> res{val, ""};
if (val < 1) {
res.first = 1;
res.second = "The ROI width must start from 1";
} else if (val > _dimCCD[0]) {
res.first = _dimCCD[0];
res.second =
std::format("The ROI width must not be greater than CCD dimension of {} pixels", _dimCCD[0]);
}
return res;
},
"ROI width"));
// ROI height
addAttribute(create12BitAttr(
CAMERA_ATTR_ROI_HEIGHT, CL_ROIHEIGHT_ADDR,
[this]<typename T>(const T& val) { // validator
std::pair<T, std::string> res{val, ""};
// ROI height can be 0 (see Eagle V 4240 instruction manual)
if (val > _dimCCD[1]) {
res.first = _dimCCD[1];
res.second =
std::format("The ROI height must not be greater than CCD dimension of {} pixels", _dimCCD[1]);
}
return res;
},
"ROI height"));
// binning validator (1-32, 64)
auto bin_validator = []<typename T>(const T& val, std::string_view log_name) {
std::pair<T, std::string> res{val, ""};
T* limits = (T*)EAGLE_CAMERA_MAX_XBIN;
if (log_name == "YBIN") {
limits = (T*)EAGLE_CAMERA_MAX_YBIN;
}
if (val < 1) {
res.first = 1;
res.second = std::format("The {} must start from 1", log_name);
} else if ((val > limits[0]) && (val < limits[1])) {
// set to the closest
res.first = (val - limits[0]) < (limits[1] - val) ? limits[0] : limits[1];
res.second = std::format("The {} must not be within {} and {}", log_name, limits[0], limits[1]);
} else if (val > limits[1]) {
res.first = limits[1];
res.second = std::format("The {} must not be greater than {}", log_name, limits[1]);
}
return res;
};
// X-bin
addAttribute(attribute_t::makeArithAttr(
CAMERA_ATTR_XBIN,
[this]() {
auto bytes = readRegisters(CL_XBIN_ADDR);
// inner register value of binning starts from 0!!!
logDebug("Return XBIN as {} (inner register value: {})", bytes[0] + 1, bytes[0]);
return bytes[0] + 1;
},
[&bin_validator, this](const uchar& val) {
logDebug("Try to set XBIN to {} ...", val);
auto v_res = bin_validator(val, "XBIN");
if (v_res.second.size()) {
logWarn(v_res.second);
}
// inner register value of binning starts from 0!!!
v_res.first -= 1;
writeRegisters(CL_XBIN_ADDR, {v_res.first});
logDebug("XBIN is set to {} (inner register value {})", v_res.first + 1, v_res.first);
}));
// Y-bin
addAttribute(attribute_t::makeArithAttr(
CAMERA_ATTR_YBIN,
[this]() {
auto bytes = readRegisters(CL_YBIN_ADDR);
// inner register value of binning starts from 0!!!
logDebug("Return YBIN as {} (inner register value: {})", bytes[0] + 1, bytes[0]);
return bytes[0] + 1;
},
[&bin_validator, this](const uchar& val) {
logDebug("Try to set YBIN to {} ...", val);
auto v_res = bin_validator(val, "YBIN");
if (v_res.second.size()) {
logWarn(v_res.second);
}
// inner register value of binning starts from 0!!!
v_res.first -= 1;
writeRegisters(CL_YBIN_ADDR, {v_res.first});
logDebug("YBIN is set to {} (inner register value {})", v_res.first + 1, v_res.first);
}));
/* TEC SET POINT AND STATE */
// DAC counts
addAttribute(create12BitAttr(
CAMERA_ATTR_TECPOINT_DAC, CL_TECPOINT_ADDR,
[]<typename T>(const T& counts) {
std::pair<T, std::string> res{counts, ""};
if (counts > 0x0FFF) {
res.second =
std::format("TEC set point counts must not be greater than {}. Set it to {}!", 0x0FFF, 0x0FFF);
res.first = 0x0FFF;
}
return res;
},
"TEC set point"));
// floating-point value
addAttribute(RaptorEagleCCD::attribute_t::makeArithAttr(
CAMERA_ATTR_TECPOINT,
[this]() {
double counts = (*this)[CAMERA_ATTR_TECPOINT_DAC];
double temp = _dacTECSetPointCalibCoeffs[0] * counts + _dacTECSetPointCalibCoeffs[1];
logDebug("Return TEC set point as {} Celsius degrees", temp);
return temp;
},
[this](const double& temp) {
uint64_t v = static_cast<uint64_t>(temp * _dacTECSetPointCalibCoeffs[2] + _dacTECSetPointCalibCoeffs[3]);
uint16_t counts = v & 0x0FFF; // extract 12-bits
logInfo("Set TEC setup point to {} C", temp);
(*this)[CAMERA_ATTR_TECPOINT_DAC] = counts;
}));
addAttribute(
CAMERA_ATTR_TECSTATE,
[this]() {
bool bit = getFPGAState().test(CL_FPGA_CTRL_REG_ENABLE_TEC_BIT);
if (bit) {
return CAMERA_ATTR_TECSTATE_ON;
} else {
return CAMERA_ATTR_TECSTATE_OFF;
}
},
[this](const std::string_view& state) {
if (state == CAMERA_ATTR_TECSTATE_ON) {
logInfo("Turn ON TEC");
setFPGAStateBit(CL_FPGA_CTRL_REG_ENABLE_TEC_BIT);
} else if (state == CAMERA_ATTR_TECSTATE_OFF) {
logInfo("Turn OFF TEC");
clearFPGAStateBit(CL_FPGA_CTRL_REG_ENABLE_TEC_BIT);
} else {
logWarn("Invalid TEC state string value! Ignore!");
}
},
adc::utils::AdcDefaultValueConverter<>::serialize<attribute_t::serialized_t, std::string_view>,
[&comp_case_ignore](const attribute_t::serialized_t& v) {
if (std::ranges::equal(v, CAMERA_ATTR_TECSTATE_ON, comp_case_ignore)) {
return CAMERA_ATTR_TECSTATE_ON;
} else if (std::ranges::equal(v, CAMERA_ATTR_TECSTATE_OFF, comp_case_ignore)) {
return CAMERA_ATTR_TECSTATE_OFF;
}
return CAMERA_ATTR_STR_INVALID;
});
/* CCD and PCB temperature (read-only) */
addAttribute(RaptorEagleCCD::attribute_t::makeArithAttr(CAMERA_ATTR_PCB_TEMP, [this]() {
uint16_t bits = 0x0FFF;
double val = -1000; // impossible value
try {
// unusual set-address command (extra 0x00 byte after the address)!
auto bytes = readRegisters({0x70, 0x71}, {0x53, 0xE0, 0x02, 0x00, 0x00});
bits = details::convert12BitToUInt(bytes);
val = bits / 16.0;
} catch (const std::system_error& ex) {
logError("An error occured while trying to get PCB temperature! (code = {}, category = {}, msg = {})",
ex.code().value(), ex.code().category().name(), ex.code().message());
}
logTrace("Return PCB temperature (current value: {}; bits: {})", val, bits);
return val;
}));
addAttribute(RaptorEagleCCD::attribute_t::makeArithAttr(CAMERA_ATTR_CCD_TEMP, [this]() {
uint16_t bits = 0xFFFF;
double val = -1000; // impossible value
try {
// unusual set-address command (extra 0x00 byte after the address)!
auto bytes = readRegisters({0x6E, 0x6F}, {0x53, 0xE0, 0x02, 0x00, 0x00});
bits = (bytes[0] << 8) + bytes[1];
val = _adcCCDTempCalibCoeffs[0] * bits + _adcCCDTempCalibCoeffs[1];
} catch (const std::system_error& ex) {
logError("An error occured while trying to get CCD temperature! (code = {}, category = {}, msg = {})",
ex.code().value(), ex.code().category().name(), ex.code().message());
}
logTrace("Return CCD temperature (current value: {}; bits: {})", val, bits);
return val;
}));
/* READ-OUT MODE (std::string_view "NORMAL" or "TEST") */
addAttribute(
CAMERA_ATTR_READ_MODE,
[this]() {
auto bytes = readRegisters(CL_READMODE_ADDR);
std::string_view val = CAMERA_ATTR_READ_MODE_NORMAL;
if (bytes[0] == CL_READOUT_MODE_NORMAL) {
} else if (bytes[0] == CL_READOUT_MODE_TEST) {
val = CAMERA_ATTR_READ_MODE_TEST;
} else {
logError("Invalid bits in readout mode register! (reg = 0x{:02X})", bytes[0]);
val = CAMERA_ATTR_STR_INVALID;
}
logTrace("Return readout mode as '{}' string", val);
return val;
},
[this](const std::string_view& mode) {
uchar bits;
if (mode == CAMERA_ATTR_READ_MODE_NORMAL) {
bits = CL_READOUT_MODE_NORMAL;
logInfo("Readout mode is set to {}", mode);
} else if (mode == CAMERA_ATTR_READ_MODE_TEST) {
bits = CL_READOUT_MODE_TEST;
logInfo("Readout mode is set to {}", mode);
} else {
logWarn("Invalid '{}' string for readout mode! Use of '{}'!", mode, CAMERA_ATTR_READ_MODE_NORMAL);
bits = CL_READOUT_MODE_NORMAL;
logInfo("Readout mode is set to {}", CAMERA_ATTR_READ_MODE_NORMAL);
}
writeRegisters(CL_READMODE_ADDR, {bits});
logDebug("Readout mode is set to 0x{:02X} bits", bits);
},
adc::utils::AdcDefaultValueConverter<>::serialize<attribute_t::serialized_t, std::string_view>,
[&comp_case_ignore](const attribute_t::serialized_t& v) {
if (std::ranges::equal(v, CAMERA_ATTR_READ_MODE_NORMAL, comp_case_ignore)) {
return CAMERA_ATTR_READ_MODE_NORMAL;
} else if (std::ranges::equal(v, CAMERA_ATTR_READ_MODE_TEST, comp_case_ignore)) {
return CAMERA_ATTR_READ_MODE_TEST;
}
return CAMERA_ATTR_STR_INVALID;
});
/* READOUT RATE (std::string_view "FAST" or "SLOW") */
addAttribute(
CAMERA_ATTR_READ_RATE,
[this]() {
auto bytes = readRegisters(CL_READOUT_CLOCK_RATE_ADDR);
std::string_view val;
if ((bytes[0] == CL_READOUT_CLOCK_RATE_A3_2MHZ) && (bytes[1] == CL_READOUT_CLOCK_RATE_A4_2MHZ)) {
val = CAMERA_ATTR_READ_RATE_FAST;
} else if ((bytes[0] == CL_READOUT_CLOCK_RATE_A3_75KHZ) && (bytes[1] == CL_READOUT_CLOCK_RATE_A4_75KHZ)) {
val = CAMERA_ATTR_READ_RATE_SLOW;
} else {
logError("Invalid bits in readout rate registers! (A3 = 0x{:02X}, A4 = 0x{:02X})", bytes[0], bytes[1]);
val = CAMERA_ATTR_STR_INVALID;
}
logTrace("Return readout rate as '()' string", val);
return val;
},
[this](const std::string_view& rate) {
byte_seq_t bytes({CL_READOUT_CLOCK_RATE_A3_2MHZ, CL_READOUT_CLOCK_RATE_A4_2MHZ});
if (rate == CAMERA_ATTR_READ_RATE_FAST) {
logInfo("Set readout rate to {}", rate);
} else if (rate == CAMERA_ATTR_READ_RATE_SLOW) {
bytes[0] = CL_READOUT_CLOCK_RATE_A3_75KHZ;
bytes[1] = CL_READOUT_CLOCK_RATE_A4_75KHZ;
logInfo("Set readout rate to {}", rate);
} else {
logWarn("Invalid '{}' string for readout rate! Use of '{}'!", rate, CAMERA_ATTR_READ_RATE_FAST);
logInfo("Set readout rate to {}", CAMERA_ATTR_READ_RATE_FAST);
}
writeRegisters(CL_READOUT_CLOCK_RATE_ADDR, bytes);
logDebug("Readout rate is set to [0x{:02X}, 0x{:02X}] bytes", bytes[0], bytes[1]);
},
adc::utils::AdcDefaultValueConverter<>::serialize<attribute_t::serialized_t, std::string_view>,
[&comp_case_ignore](const attribute_t::serialized_t& v) {
if (std::ranges::equal(v, CAMERA_ATTR_READ_RATE_FAST, comp_case_ignore)) {
return CAMERA_ATTR_READ_RATE_FAST;
} else if (std::ranges::equal(v, CAMERA_ATTR_READ_RATE_SLOW, comp_case_ignore)) {
return CAMERA_ATTR_READ_RATE_SLOW;
}
return CAMERA_ATTR_STR_INVALID;
});
/* SHUTTER CONTROL (std::string_view "OPEN", "CLOSED", "EXP") AND OPEN/CLOSE DELAY */
addAttribute(
CAMERA_ATTR_SHUTTER_STATE,
[this]() {
auto bytes = readRegisters(CL_SHUTTER_CONTROL_ADDR);
std::string_view val;
if (bytes[0] == CL_SHUTTER_CLOSED) {
val = CAMERA_ATTR_SHUTTER_STATE_CLOSED;
} else if (bytes[0] == CL_SHUTTER_OPEN) {
val = CAMERA_ATTR_SHUTTER_STATE_OPEN;
} else if (bytes[0] == CL_SHUTTER_EXP) {
val = CAMERA_ATTR_SHUTTER_STATE_EXP;
} else {
logError("Invalid bits in shhutter control register! (reg = 0x{:02X})", bytes[0]);
val = CAMERA_ATTR_STR_INVALID;
}
logTrace("Return shutter state as '{}' string (bits = 0x{:02X})", val, bytes[0]);
return val;
},
[this](const std::string_view& state) {
byte_seq_t bytes{CL_SHUTTER_EXP};
if (state == CAMERA_ATTR_SHUTTER_STATE_EXP) {
logInfo("Set shutter state to {}", state);
} else if (state == CAMERA_ATTR_SHUTTER_STATE_CLOSED) {
bytes[0] = CL_SHUTTER_CLOSED;
logInfo("Set shutter state to {}", state);
} else if (state == CAMERA_ATTR_SHUTTER_STATE_OPEN) {
bytes[0] = CL_SHUTTER_OPEN;
logInfo("Set shutter state to {}", state);
} else {
logWarn("Invalid '{}' string for shutter state! Use of '{}'!", state, CL_SHUTTER_EXP);
logInfo("Set shutter state to {}", CL_SHUTTER_EXP);
}
writeRegisters(CL_SHUTTER_CONTROL_ADDR, bytes);
logDebug("Shutter state is set to 0x{:02X}", bytes[0]);
},
adc::utils::AdcDefaultValueConverter<>::serialize<attribute_t::serialized_t, std::string_view>,
[&comp_case_ignore](const attribute_t::serialized_t& v) {
if (std::ranges::equal(v, CAMERA_ATTR_SHUTTER_STATE_EXP, comp_case_ignore)) {
return CAMERA_ATTR_SHUTTER_STATE_EXP;
} else if (std::ranges::equal(v, CAMERA_ATTR_SHUTTER_STATE_CLOSED, comp_case_ignore)) {
return CAMERA_ATTR_SHUTTER_STATE_CLOSED;
} else if (std::ranges::equal(v, CAMERA_ATTR_SHUTTER_STATE_OPEN, comp_case_ignore)) {
return CAMERA_ATTR_SHUTTER_STATE_OPEN;
}
return CAMERA_ATTR_STR_INVALID;
});
// floating-point, value is expected in millisecs
addAttribute(RaptorEagleCCD::attribute_t::makeArithAttr(
CAMERA_ATTR_SHUTTER_CLOSEDELAY,
[this]() {
auto bytes = readRegisters({0xA7});
double delay = SHUTTER_DELAY_PERIOD * bytes[0];
logTrace("Return shutter closed delay duration as {} milliseconds", delay);
return delay;
},
[this](const double& delay) {
double d = SHUTTER_DEFAULT_DELAY_PERIOD;
if (delay < 0) {
logWarn("Shutter closed delay dration must be a non-negatve value! Use of default value {}",
SHUTTER_DEFAULT_DELAY_PERIOD);
} else if (delay > SHUTTER_MAX_DELAY_PERIOD) {
logWarn("Shutter closed delay dration must not be greater than {} value! Use of default value {}",
SHUTTER_MAX_DELAY_PERIOD, SHUTTER_DEFAULT_DELAY_PERIOD);
} else {
d = delay;
}
uchar counts = static_cast<uchar>(std::round(d / SHUTTER_DELAY_PERIOD));
writeRegisters({0xA7}, {counts});
logInfo("Shutter closed delay is set to {} msecs", d);
logDebug("Shutter closed delay bits are set to 0x{:02X}", counts);
}));
// floating-point, value is expected in millisecs
addAttribute(RaptorEagleCCD::attribute_t::makeArithAttr(
CAMERA_ATTR_SHUTTER_OPENDELAY,
[this]() {
auto bytes = readRegisters({0xA6});
double delay = SHUTTER_DELAY_PERIOD * bytes[0];
logTrace("Return shutter open delay duration as {} milliseconds", delay);
return delay;
},
[this](const double& delay) {
double d = SHUTTER_DEFAULT_DELAY_PERIOD;
if (delay < 0) {
logWarn("Shutter open delay dration must be a non-negatve value! Use of default value {}",
SHUTTER_DEFAULT_DELAY_PERIOD);
} else if (delay > SHUTTER_MAX_DELAY_PERIOD) {
logWarn("Shutter open delay dration must not be greater than {} value! Use of default value {}",
SHUTTER_MAX_DELAY_PERIOD, SHUTTER_DEFAULT_DELAY_PERIOD);
} else {
d = delay;
}
uchar counts = static_cast<uchar>(std::round(d / SHUTTER_DELAY_PERIOD));
writeRegisters({0xA6}, {counts});
logInfo("Shutter open delay is set to {} msecs", d);
logDebug("Shutter open delay bits are set to 0x{:02X}", counts);
}));
/* TRIGGER MODE */
addAttribute(
CAMERA_ATTR_TRIGGER_MODE,
[this]() {
// auto bytes = readRegisters({0xD4});
// std::bitset<8> bits{bytes[0]};
auto bits = getTriggerRegister();
std::string_view trigger_mode;
if (bits.test(CL_TRIGGER_MODE_EXT_TRIGGER_BIT)) { // external trigger enabled, what is the edge?
if (bits.test(CL_TRIGGER_MODE_ENABLE_RISING_EDGE_BIT)) {
trigger_mode = CAMERA_ATTR_TRIGGER_MODE_EXT_RISING;
} else {
trigger_mode = CAMERA_ATTR_TRIGGER_MODE_EXT_FALLING;
}
} else if (bits.test(CL_TRIGGER_MODE_CONTINUOUS_SEQ_BIT)) { // continuous sequence enabled
if (bits.test(CL_TRIGGER_MODE_FIXED_FRAME_RATE_BIT)) {
trigger_mode = CAMERA_ATTR_TRIGGER_MODE_FFR;
} else {
trigger_mode = CAMERA_ATTR_TRIGGER_MODE_ITR;
}
} else {
trigger_mode = CAMERA_ATTR_TRIGGER_MODE_SNAPSHOT;
}
// logTrace("Return trigger mode as '{}' string (bits = 0b{:08b})", trigger_mode, bytes[0]);
logTrace("Return trigger mode as '{}' string (bits = 0b{})", trigger_mode, bits.to_string());
return trigger_mode;
},
[this](const std::string_view& mode) {
uchar bits = CL_TRIGGER_MODE_IDLE;
if (mode == CAMERA_ATTR_TRIGGER_MODE_EXT_RISING) {
bits = CL_TRIGGER_MODE_EXT_RISING_EDGE;
logInfo("Trigger mode is set to {}", mode);
} else if (mode == CAMERA_ATTR_TRIGGER_MODE_EXT_FALLING) {
bits = CL_TRIGGER_MODE_EXT_FALLING_EDGE;
logInfo("Trigger mode is set to {}", mode);
} else if (mode == CAMERA_ATTR_TRIGGER_MODE_FFR) {
bits = CL_TRIGGER_MODE_FFR;
logInfo("Trigger mode is set to {}", mode);
} else if (mode == CAMERA_ATTR_TRIGGER_MODE_ITR) {
bits = CL_TRIGGER_MODE_ITR;
logInfo("Trigger mode is set to {}", mode);
} else if (mode == CAMERA_ATTR_TRIGGER_MODE_IDLE) {
logInfo("Trigger mode is set to {}", mode);
} else {
logWarn("Invalid trigger mode! Set it to {}!", CAMERA_ATTR_TRIGGER_MODE_IDLE);
}
// // snapshot mode is self-clearing bit so activate it directly in 'startAcquision' method
// if (mode != CAMERA_ATTR_TRIGGER_MODE_SNAPSHOT) {
// writeRegisters({0xD4}, {bits});
// }
// logDebug("Trigger mode bits are set to 0b{:08b}", bits);
setTriggerRegister(bits);
},
adc::utils::AdcDefaultValueConverter<>::serialize<attribute_t::serialized_t, std::string_view>,
[&comp_case_ignore](const attribute_t::serialized_t& v) {
if (std::ranges::equal(v, CAMERA_ATTR_TRIGGER_MODE_EXT_RISING, comp_case_ignore)) {
return CAMERA_ATTR_TRIGGER_MODE_EXT_RISING;
} else if (std::ranges::equal(v, CAMERA_ATTR_TRIGGER_MODE_EXT_FALLING, comp_case_ignore)) {
return CAMERA_ATTR_TRIGGER_MODE_EXT_FALLING;
} else if (std::ranges::equal(v, CAMERA_ATTR_TRIGGER_MODE_FFR, comp_case_ignore)) {
return CAMERA_ATTR_TRIGGER_MODE_FFR;
} else if (std::ranges::equal(v, CAMERA_ATTR_TRIGGER_MODE_ITR, comp_case_ignore)) {
return CAMERA_ATTR_TRIGGER_MODE_ITR;
} else if (std::ranges::equal(v, CAMERA_ATTR_TRIGGER_MODE_SNAPSHOT, comp_case_ignore)) {
return CAMERA_ATTR_TRIGGER_MODE_SNAPSHOT;
}
return CAMERA_ATTR_STR_INVALID;
});
addAttribute(
CAMERA_ATTR_GAIN,
[this]() {
auto bits = getFPGAState();
if (bits.test(CL_FPGA_CTRL_REG_HIGH_GAIN_BIT)) {
return CAMERA_ATTR_GAIN_HIGH;
} else {
return CAMERA_ATTR_GAIN_LOW;
}
},
[this](const std::string_view& gain) {
if (gain == CAMERA_ATTR_GAIN_HIGH) {
setFPGAStateBit(CL_FPGA_CTRL_REG_HIGH_GAIN_BIT);
} else if (gain == CAMERA_ATTR_GAIN_LOW) {
clearFPGAStateBit(CL_FPGA_CTRL_REG_HIGH_GAIN_BIT);
} else {
logWarn("Invalid gain mode! Set it to {}", CL_FPGA_CTRL_REG_HIGH_GAIN_BIT);
setFPGAStateBit(CL_FPGA_CTRL_REG_HIGH_GAIN_BIT);
}
},
adc::utils::AdcDefaultValueConverter<>::serialize<attribute_t::serialized_t, std::string_view>,
[&comp_case_ignore](const attribute_t::serialized_t& v) {
if (std::ranges::equal(v, CAMERA_ATTR_GAIN_HIGH, comp_case_ignore)) {
return CAMERA_ATTR_GAIN_HIGH;
} else if (std::ranges::equal(v, CAMERA_ATTR_GAIN_LOW, comp_case_ignore)) {
return CAMERA_ATTR_GAIN_LOW;
}
return CAMERA_ATTR_STR_INVALID;
});
logDebug("Attributes and commands are successfully created!");
}