#pragma once #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef USE_OPENSSL_WITH_ASIO #include #include #endif #include "../../common/adc_traits.h" #include "../adc_net_concepts.h" #include "../adc_netproto.h" namespace adc::traits { // special ASIO-related template specializations template <> struct adc_func_traits> { using ret_t = std::nullptr_t; using args_t = std::tuple; using arg1_t = std::nullptr_t; static constexpr size_t arity = 0; }; template <> struct adc_func_traits> { using ret_t = std::nullptr_t; using args_t = std::tuple; using arg1_t = std::nullptr_t; static constexpr size_t arity = 0; }; template <> struct adc_func_traits { using ret_t = std::nullptr_t; using args_t = std::tuple; using arg1_t = std::nullptr_t; static constexpr size_t arity = 0; }; } // namespace adc::traits namespace adc::impl { template concept adc_asio_transport_proto_c = std::derived_from || std::derived_from || std::derived_from || std::derived_from || std::derived_from; template concept adc_asio_tls_transport_proto_c = std::derived_from || std::derived_from || std::derived_from; template concept adc_asio_stream_transport_proto_c = std::derived_from || std::derived_from; template concept adc_asio_is_future = requires { // [](std::type_identity>) {}(std::type_identity>()); [](std::type_identity>) { }(std::type_identity>{}); }; template concept adc_asio_is_awaitable = requires { [](std::type_identity>) { }(std::type_identity>{}); }; template concept adc_asio_special_comp_token_c = adc_asio_is_future || adc_asio_is_awaitable || std::same_as, asio::deferred_t>; namespace details { // template template class AdcAcceptorASIO { public: using netservice_t = SRVT; // deduce needed types using transport_proto_t = typename SRVT::endpoint_t::protocol_type; using socket_t = typename SRVT::endpoint_t::protocol_type::socket; using acceptor_t = std::conditional_t>, std::nullptr_t, // there is no acceptor typename transport_proto_t::acceptor>; static constexpr std::chrono::duration DEFAULT_ACCEPT_TIMEOUT = std::chrono::seconds::max(); AdcAcceptorASIO(asio::io_context& io_ctx, const netservice_t::endpoint_t& endpoint) : _ioContext(io_ctx), _acceptor(io_ctx, endpoint) { } AdcAcceptorASIO(const AdcAcceptorASIO& other) : _ioContext(other._ioContext), _acceptor(std::move(other._acceptor)) { }; template TokenT, traits::adc_time_duration_c DT = decltype(DEFAULT_ACCEPT_TIMEOUT)> auto asyncAccept(TokenT&& token, const DT& timeout = DEFAULT_ACCEPT_TIMEOUT) { if constexpr (std::is_null_pointer_v) { static_assert(false, "INVALID TRANSPORT PROTOCOL TYPE!"); } enum { starting, native_accept, post_accept, finishing }; auto timer = netservice_t::getDeadlineTimer(_acceptor, timeout); // auto srv = std::make_shared(_ioContext); auto srv = std::make_unique(_ioContext); // return asio::async_compose( // asyncAcceptImplementation{this, _acceptor, std::move(timer), srv, AdcAcceptorASIO::starting}, token, // _ioContext); return asio::async_compose( [timer = std::move(timer), srv = std::move(srv), state = AdcAcceptorASIO::starting, this]( auto& self, std::error_code ec = {}) mutable { if (!ec) { switch (state) { case starting: // _starting(srv, state, self); _starting(srv, state, std::move(self)); break; case native_accept: // _native_accept(srv, state, self); _native_accept(srv, state, std::move(self)); break; case post_accept: // _post_accept(srv, state, self); _post_accept(srv, state, std::move(self)); break; case finishing: // _finishing(srv, state, self); _finishing(srv, state, std::move(self)); break; default: break; } } if (netservice_t::isTimeout(timer, ec)) { ec = std::make_error_code(std::errc::timed_out); } else { // an error occured in async_accept timer->cancel(); } self.complete(ec, std::move(*srv)); }, token, _ioContext); } template auto accept(const DT& timeout = DEFAULT_ACCEPT_TIMEOUT) { auto f = asyncAccept(asio::use_future, timeout); return f.get(); } protected: asio::io_context& _ioContext; acceptor_t _acceptor; enum state_t { starting, native_accept, post_accept, finishing }; // using self_t = std::function; using self_t = std::function; typedef std::function&, state_t&, self_t)> stage_func_t; // typedef std::function&, state_t&, self_t)> stage_func_t; stage_func_t _starting = [this](auto&, state_t& state, self_t self) mutable { state = native_accept; // asio::post(_ioContext, std::bind([](auto, auto) {}, std::move(self), std::error_code{})); }; stage_func_t _native_accept = [this](auto& srv, state_t& state, self_t self) mutable { state = post_accept; _acceptor.async_accept(srv->_socket, std::move(self)); }; stage_func_t _post_accept = [this](auto&, state_t& state, self_t self) mutable { state = finishing; }; stage_func_t _finishing = [](auto&, state_t&, self_t) mutable {}; /* struct asyncAcceptImplementation { AdcAcceptorASIO* acp; acceptor_t& _acceptor; std::shared_ptr timer; std::shared_ptr srv; // std::unique_ptr timer; // std::unique_ptr srv; state_t state; asyncAcceptImplementation(AdcAcceptorASIO* a, acceptor_t& ar, std::shared_ptr tm, std::shared_ptr s, state_t st) : acp(a), _acceptor(ar), timer(tm), srv(s), state(st) { } asyncAcceptImplementation(const asyncAcceptImplementation& other) : _acceptor(other._acceptor) { acp = other.acp; timer = other.timer; srv = other.srv; state = other.state; } void operator()(auto& self, std::error_code ec = {}) { if (!ec) { switch (state) { case starting: acp->_starting(srv, state, self); break; case native_accept: acp->_native_accept(srv, state, self); break; case post_accept: acp->_post_accept(srv, state, self); break; case finishing: acp->_finishing(srv, state, self); break; default: break; } } if (netservice_t::isTimeout(timer, ec)) { ec = std::make_error_code(std::errc::timed_out); } else { // an error occured in async_accept timer->cancel(); } self.complete(ec, std::move(*srv)); } }; */ }; } // namespace details template SESSION_PROTOT, traits::adc_output_char_range RMSGT = std::vector> // used only for inner storing of message byte sequence class AdcNetServiceASIOBase : public SESSION_PROTOT { public: friend details::AdcAcceptorASIO; // typedefs to satisfy 'adc_netservice_c' concept typedef std::string_view netservice_ident_t; typedef std::vector send_msg_t; // in general, only one of several possible typedef RMSGT recv_msg_t; // in general, only one of several possible (see class template arguments declaration) typedef traits::adc_common_duration_t timeout_t; using endpoint_t = typename TRANSPORT_PROTOT::endpoint; // typedefs for completion tokens (callbacks, required by 'adc_netservice_c' concept) typedef std::function async_connect_callback_t; typedef std::function async_send_callback_t; typedef std::function async_receive_callback_t; // typedefs from transport protocol using socket_t = typename TRANSPORT_PROTOT::socket; typedef details::AdcAcceptorASIO acceptor_t; static constexpr std::chrono::duration DEFAULT_CONNECT_TIMEOUT = std::chrono::seconds(10); static constexpr std::chrono::duration DEFAULT_SEND_TIMEOUT = std::chrono::seconds(5); static constexpr std::chrono::duration DEFAULT_RECEIVE_TIMEOUT = std::chrono::seconds(5); AdcNetServiceASIOBase(asio::io_context& ctx) : SESSION_PROTOT(), _ioContext(ctx), _receiveStrand(_ioContext), _socket(_ioContext), _receiveQueue() { } AdcNetServiceASIOBase(socket_t socket) : SESSION_PROTOT(), _ioContext(static_cast(socket.get_executor().context())), _socket(std::move(socket)), _receiveStrand(_ioContext), _receiveQueue() { } // NOTE: CANNOT MOVE asio::streambuf CORRECTLY?!!! // AdcNetServiceASIOBase(AdcNetServiceASIOBase&& other) = default; AdcNetServiceASIOBase(AdcNetServiceASIOBase&& other) : _ioContext(other._ioContext), _receiveStrand(std::move(other._receiveStrand)), _socket(std::move(other._socket)), _streamBuffer(), _receiveQueue(std::move(other._receiveQueue)) { auto bytes = asio::buffer_copy(_streamBuffer.prepare(other._streamBuffer.size()), other._streamBuffer.data()); _streamBuffer.commit(bytes); } // AdcNetServiceASIOBase(AdcNetServiceASIOBase&& other) = delete; AdcNetServiceASIOBase(const AdcNetServiceASIOBase&) = delete; // no copy constructor! virtual ~AdcNetServiceASIOBase() {} AdcNetServiceASIOBase& operator=(const AdcNetServiceASIOBase&) = delete; // AdcNetServiceASIOBase& operator=(AdcNetServiceASIOBase&& other) = delete; // AdcNetServiceASIOBase& operator=(AdcNetServiceASIOBase&& other) = default; AdcNetServiceASIOBase& operator=(AdcNetServiceASIOBase&& other) { _ioContext = other._ioContext; _receiveStrand = std::move(other._receiveStrand); _receiveQueue = std::move(other._receiveQueue); _socket = std::move(other._socket); _streamBuffer.consume(_streamBuffer.size()); auto bytes = asio::buffer_copy(_streamBuffer.prepare(other._streamBuffer.size()), other._streamBuffer.data()); _streamBuffer.commit(bytes); return *this; }; constexpr netservice_ident_t ident() const { return _ident; } /* asynchronuos methods */ template TokenT, traits::adc_time_duration_c TimeoutT = decltype(DEFAULT_CONNECT_TIMEOUT)> auto asyncConnect(const endpoint_t& endpoint, TokenT&& token, const TimeoutT& timeout = DEFAULT_CONNECT_TIMEOUT) { auto timer = getDeadlineTimer(_socket, timeout); return asio::async_compose( [start = true, endpoint, timer = std::move(timer), this](auto& self, std::error_code ec = {}) mutable { if (!ec) { if (start) { start = false; return _socket.async_connect(endpoint, std::move(self)); } } if (isTimeout(timer, ec)) { ec = std::make_error_code(std::errc::timed_out); } else { // an error occured in async_connect timer->cancel(); } self.complete(ec); }, token, _socket); } template TokenT, traits::adc_time_duration_c TimeoutT = decltype(DEFAULT_SEND_TIMEOUT)> auto asyncSend(const MessageT& msg, TokenT&& token, const TimeoutT& timeout = DEFAULT_SEND_TIMEOUT) { // create buffer sequence of sending session protocol representation of the input message std::vector buff_seq; // std::ranges::for_each(this->toProto(msg), [&buff_seq](const auto& el) { buff_seq.emplace_back(el); }); std::ranges::for_each(this->toProto(msg), [&buff_seq](const auto& el) { buff_seq.emplace_back(el.data(), el.size()); }); auto timer = getDeadlineTimer(_socket, timeout); return asio::async_compose( [start = true, buff_seq = std::move(buff_seq), timer = std::move(timer), this]( auto& self, std::error_code ec = {}, size_t = 0) mutable { if (!ec) { if (start) { start = false; if constexpr (std::derived_from>) { return asio::async_write(_socket, buff_seq, std::move(self)); } else if constexpr (std::derived_from>) { return _socket.async_send(buff_seq, std::move(self)); } else if constexpr (std::derived_from>) { return _socket.async_send(buff_seq, std::move(self)); } else { static_assert(false, "UNKNOWN ASIO-LIBRARY SOCKET TYPE!!!"); } } } if (isTimeout(timer, ec)) { ec = std::make_error_code(std::errc::timed_out); } else { // an error occured in async_write/async_send timer->cancel(); } self.complete(ec); }, token, _socket); } template auto asyncReceive(TokenT&& token, const TimeoutT& timeout = DEFAULT_RECEIVE_TIMEOUT) { // static asio::streambuf _streamBuffer; // check completion token signature and deduce message type // if constexpr (!adc_asio_special_comp_token_c && !is_async_ctx_t) { if constexpr (!adc_asio_special_comp_token_c) { static_assert(traits::adc_func_traits::arity == 2, "INVALID COMPLETION TOKEN SIGNATURE!"); static_assert(std::is_same_v>, std::error_code>, "INVALID COMPLETION TOKEN SIGNATURE!"); static_assert(traits::adc_output_char_range< std::tuple_element_t<1, typename traits::adc_func_traits::args_t>>, "INVALID COMPLETION TOKEN SIGNATURE!"); } using msg_t = std::conditional_t< // adc_asio_special_comp_token_c || is_async_ctx_t, RMSGT, adc_asio_special_comp_token_c, RMSGT, std::remove_cvref_t::args_t>>>; auto out_flags = std::make_shared(); auto timer = getDeadlineTimer(_socket, timeout); return asio::async_compose( [out_flags, do_read = true, timer = std::move(timer), this](auto& self, std::error_code ec = {}, size_t nbytes = 0) mutable { msg_t msg; if (!ec) { if (do_read) { do_read = false; if (_receiveQueue.size()) { // return message from queue timer->cancel(); auto imsg = _receiveQueue.front(); _receiveQueue.pop(); if constexpr (std::is_same_v) { self.complete(std::error_code(), std::move(imsg)); } else { self.complete(std::error_code(), {imsg.begin(), imsg.end()}); } return; } auto n_avail = _socket.available(); auto buff = _streamBuffer.prepare(n_avail ? n_avail : 1); if constexpr (std::derived_from>) { return asio::async_read(_socket, std::move(buff), asio::transfer_at_least(1), std::move(self)); } else if constexpr (std::derived_from>) { // datagram, so it should be received at once return _socket.async_receive(std::move(buff), std::move(self)); } else if constexpr (std::derived_from>) { // datagram, so it should be received at once return _socket.async_receive(std::move(buff), *out_flags, std::move(self)); } else { static_assert(false, "UNKNOWN ASIO-LIBRARY SOCKET TYPE!!!"); } } // zero-length message for SEQ_PACK sockets is EOF if constexpr (std::derived_from>) { if (!nbytes) { timer->cancel(); self.complete(std::error_code(asio::error::misc_errors::eof), std::move(msg)); return; } } _streamBuffer.commit(nbytes); // if (!nbytes) { // do_read = true; // asio::post(std::move(self)); // initiate consequence socket's read operation // return; // } auto start_ptr = static_cast(_streamBuffer.data().data()); auto net_pack = this->search(std::span(start_ptr, _streamBuffer.size())); if (net_pack.empty()) { do_read = true; asio::post(std::move(self)); // initiate consequence socket's read operation return; } timer->cancel(); // there were no errors in the asynchronous read-operation, so stop timer // here one has at least a single message std::ranges::copy(this->fromProto(net_pack), std::back_inserter(msg)); _streamBuffer.consume(net_pack.size()); while (_streamBuffer.size()) { // search for possible additional session protocol packets start_ptr = static_cast(_streamBuffer.data().data()); net_pack = this->search(std::span(start_ptr, _streamBuffer.size())); if (!net_pack.empty()) { _receiveQueue.emplace(); std::ranges::copy(this->fromProto(net_pack), std::back_inserter(_receiveQueue.back())); _streamBuffer.consume(net_pack.size()); } else { break; // exit and hold remaining bytes in stream buffer } } } if (isTimeout(timer, ec)) { ec = std::make_error_code(std::errc::timed_out); } else { // an error occured in async_* timer->cancel(); } if constexpr (std::is_same_v) { self.complete(ec, std::move(msg)); } else { self.complete(ec, {msg.begin(), msg.end()}); } // if constexpr (adc_asio_special_comp_token_c) { // self.complete(ec, std::move(msg)); // } else { // may be of non-RMSGT type // self.complete(ec, {msg.begin(), msg.end()}); // } }, token, _receiveStrand); } /* blocking methods */ template auto connect(const endpoint_t& endpoint, const TimeoutT& timeout = DEFAULT_CONNECT_TIMEOUT) { std::future ftr = asyncConnect(endpoint, asio::use_future, timeout); ftr.get(); } template auto send(const R& msg, const TimeoutT& timeout = DEFAULT_SEND_TIMEOUT) { std::future ftr = asyncSend(msg, asio::use_future, timeout); ftr.get(); } template auto receive(const TimeoutT& timeout = DEFAULT_RECEIVE_TIMEOUT) { std::future ftr = asyncReceive(asio::use_future, timeout); return ftr.get(); } // one still may receive messages from queue! std::error_code close() { std::error_code ec; _socket.shutdown(_shutdownType, ec); if (!ec) { _socket.close(ec); } return ec; } /* additional ASIO-related methods */ void clearRcvQueue() { // clear receiving messages queue // NOTE: there is no racing condition here since using asio::strand! asio::post(_receiveStrand, [this]() { // _receiveQueue = {}; }); } void clearRcvBuff() { asio::post(_receiveStrand, [this]() { // _streamBuffer.consume(_streamBuffer.size()); }); } void clearRcvData() { asio::post(_receiveStrand, [this]() { _receiveQueue = {}; _streamBuffer.consume(_streamBuffer.size()); }); } void setShutdownType(asio::socket_base::shutdown_type shutdown_type) { _shutdownType = shutdown_type; } asio::socket_base::shutdown_type getShutdownType() const { return _shutdownType; } protected: static constexpr netservice_ident_t _ident = std::derived_from> ? "STREAM-SOCKET NETWORK SERVICE" : std::derived_from> ? "DATAGRAM-SOCKET NETWORK SERVICE" : std::derived_from> ? "SEQPACKET-SOCKET NETWORK SERVICE" : "UNKNOWN"; asio::io_context& _ioContext; asio::io_context::strand _receiveStrand; socket_t _socket; asio::streambuf _streamBuffer; std::queue> _receiveQueue; asio::socket_base::shutdown_type _shutdownType = asio::socket_base::shutdown_both; // public: template static std::unique_ptr getDeadlineTimer(CancelableT& obj, const TimeoutT& timeout, bool arm = true) { auto timer = std::make_unique(obj.get_executor()); // if (timeout == std::chrono::duration::max()) { // return timer; // do not arm the timer if MAX duration are given // } if (arm) { std::chrono::seconds max_d = std::chrono::duration_cast( std::chrono::steady_clock::time_point::max() - std::chrono::steady_clock::now() - std::chrono::seconds(1)); timer->expires_after(timeout < max_d ? timeout : max_d); // to avoid overflow! // timer->expires_after(timeout); timer->async_wait([&obj](const std::error_code& ec) mutable { if (!ec) { obj.cancel(); } }); } return timer; } template static bool isTimeout(const std::unique_ptr& timer, const std::error_code& ec) { auto exp_time = timer->expiry(); return (exp_time < std::chrono::steady_clock::now()) && (ec == asio::error::operation_aborted); } template static bool isTimeout(const std::shared_ptr& timer, const std::error_code& ec) { auto exp_time = timer->expiry(); return (exp_time < std::chrono::steady_clock::now()) && (ec == asio::error::operation_aborted); } }; } // namespace adc::impl