zerndeco/zernikeR.c
2016-07-14 09:47:49 +03:00

688 lines
22 KiB
C

/*
* zernikeR.c - Zernike decomposition for scattered points & annular aperture
*
* Copyright 2013 Edward V. Emelianoff <eddy@sao.ru>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
* MA 02110-1301, USA.
*/
#include <gsl/gsl_linalg.h>
#include <gsl/gsl_matrix.h>
#include <gsl/gsl_blas.h>
#include "usefull_macros.h"
#include "zernike.h"
#include "zern_private.h"
/**
* Build array with R powers (from 0 to n inclusive)
* @param n - power of Zernike polinomial (array size = n+1)
* @param Sz - size of P array
* @param P (i) - polar coordinates of points
*/
double **build_rpowR(int n, int Sz, polar *P){
int i, j, N = n + 1;
double **Rpow = MALLOC(double*, N);
Rpow[0] = MALLOC(double, Sz);
for(i = 0; i < Sz; i++) Rpow[0][i] = 1.; // zero's power
for(i = 1; i < N; i++){ // Rpow - is quater I of cartesian coordinates ('cause other are fully simmetrical)
Rpow[i] = MALLOC(double, Sz);
double *rp = Rpow[i], *rpo = Rpow[i-1];
polar *p = P;
for(j = 0; j < Sz; j++, rp++, rpo++, p++){
*rp = (*rpo) * p->r;
}
}
return Rpow;
}
bool check_parameters(int n, int m, int Sz, polar *P){
bool erparm = false;
if(Sz < 3 || !P)
ERRX(_("Size of matrix must be > 2!"));
if(n > 100)
ERRX(_("Order of Zernike polynomial must be <= 100!"));
if(n < 0) erparm = true;
if(n < iabs(m)) erparm = true; // |m| must be <= n
if((n - m) % 2) erparm = true; // n-m must differ by a prod of 2
if(erparm)
ERRX(_("Wrong parameters of Zernike polynomial (%d, %d)"), n, m);
else
if(!FK) build_factorial();
return erparm;
}
/**
* Zernike function for scattering data
* @param n,m - orders of polynomial
* @param Sz - number of points
* @param P(i) - array with points coordinates (polar, r<=1)
* @param norm(o) - (optional) norm coefficient
* @return dynamically allocated array with Z(n,m) for given array P
*/
double *zernfunR(int n, int m, int Sz, polar *P, double *norm){
if(check_parameters(n, m, Sz, P)) return NULL;
int j, k, m_abs = iabs(m), iup = (n-m_abs)/2;
double **Rpow = build_rpowR(n, Sz, P);
double ZSum = 0.;
// now fill output matrix
double *Zarr = MALLOC(double, Sz); // output matrix
double *Zptr = Zarr;
polar *p = P;
for(j = 0; j < Sz; j++, p++, Zptr++){
double Z = 0.;
if(p->r > 1.) continue; // throw out points with R>1
// calculate R_n^m
for(k = 0; k <= iup; k++){ // Sum
double z = (1. - 2. * (k % 2)) * FK[n - k] // (-1)^k * (n-k)!
/(//----------------------------------- ----- -------------------------------
FK[k]*FK[(n+m_abs)/2-k]*FK[(n-m_abs)/2-k] // k!((n+|m|)/2-k)!((n-|m|)/2-k)!
);
Z += z * Rpow[n-2*k][j]; // *R^{n-2k}
}
// normalize
double eps_m = (m) ? 1. : 2.;
Z *= sqrt(2.*(n+1.) / M_PI / eps_m );
double m_theta = (double)m_abs * p->theta;
// multiply to angular function:
if(m){
if(m > 0)
Z *= cos(m_theta);
else
Z *= sin(m_theta);
}
*Zptr = Z;
ZSum += Z*Z;
}
if(norm) *norm = ZSum;
// free unneeded memory
free_rpow(&Rpow, n);
return Zarr;
}
/**
* Zernike polynomials in Noll notation for square matrix
* @param p - index of polynomial
* @other params are like in zernfunR
* @return zernfunR
*/
double *zernfunNR(int p, int Sz, polar *P, double *norm){
int n, m;
convert_Zidx(p, &n, &m);
return zernfunR(n,m,Sz,P,norm);
}
/**
* Zernike decomposition of WF with coordinates P
* @param Nmax (i) - maximum power of Zernike polinomial for decomposition
* @param Sz, P(i) - size (Sz) of points array (P)
* @param heights(i) - wavefront walues in points P
* @param Zsz (o) - size of Z coefficients array
* @param lastIdx(o) - (if !NULL) last non-zero coefficient
* @return array of Zernike coefficients
*/
double *ZdecomposeR(int Nmax, int Sz, polar *P, double *heights, int *Zsz, int *lastIdx){
int i, pmax, maxIdx = 0;
double *Zidxs = NULL, *icopy = NULL;
pmax = (Nmax + 1) * (Nmax + 2) / 2; // max Z number in Noll notation
Zidxs = MALLOC(double, pmax);
icopy = MALLOC(double, Sz);
memcpy(icopy, heights, Sz*sizeof(double)); // make image copy to leave it unchanged
*Zsz = pmax;
for(i = 0; i < pmax; i++){ // now we fill array
double norm, *Zcoeff = zernfunNR(i, Sz, P, &norm);
int j;
double *iptr = icopy, *zptr = Zcoeff, K = 0.;
for(j = 0; j < Sz; j++, iptr++, zptr++)
K += (*zptr) * (*iptr) / norm; // multiply matrixes to get coefficient
if(fabs(K) < Z_prec)
continue; // there's no need to substract values that are less than our precision
Zidxs[i] = K;
maxIdx = i;
// Without these 3 lines wavefront decomposition on scattered and/or small amount of points would be wrong ===================>
iptr = icopy; zptr = Zcoeff;
for(j = 0; j < Sz; j++, iptr++, zptr++)
*iptr -= K * (*zptr); // subtract composed coefficient to reduce high orders values
//<=================== */
FREE(Zcoeff);
}
if(lastIdx) *lastIdx = maxIdx;
FREE(icopy);
return Zidxs;
}
/**
* Restoration of image in points P by Zernike polynomials coefficients
* @param Zsz (i) - number of actual elements in coefficients array
* @param Zidxs(i) - array with Zernike coefficients
* @param Sz, P(i) - number (Sz) of points (P)
* @return restored image
*/
double *ZcomposeR(int Zsz, double *Zidxs, int Sz, polar *P){
int i;
double *image = MALLOC(double, Sz);
for(i = 0; i < Zsz; i++){ // now we fill array
double K = Zidxs[i];
if(fabs(K) < Z_prec) continue;
double *Zcoeff = zernfunNR(i, Sz, P, NULL);
int j;
double *iptr = image, *zptr = Zcoeff;
for(j = 0; j < Sz; j++, iptr++, zptr++)
*iptr += K * (*zptr); // add next Zernike polynomial
FREE(Zcoeff);
}
return image;
}
/**
* Prints out GSL matrix
* @param M (i) - matrix to print
*/
void print_matrix(gsl_matrix *M){
int x,y, H = M->size1, W = M->size2;
size_t T = M->tda;
printf("\nMatrix %dx%d:\n", W, H);
for(y = 0; y < H; y++){
double *ptr = &(M->data[y*T]);
printf("str %6d", y);
for(x = 0; x < W; x++, ptr++)
printf("%6.1f ", *ptr);
printf("\n");
}
printf("\n\n");
}
/**
To try less-squares fit I decide after reading of
@ARTICLE{2010ApOpt..49.6489M,
author = {{Mahajan}, V.~N. and {Aftab}, M.},
title = "{Systematic comparison of the use of annular and Zernike circle polynomials for annular wavefronts}",
journal = {\ao},
year = 2010,
month = nov,
volume = 49,
pages = {6489},
doi = {10.1364/AO.49.006489},
adsurl = {http://adsabs.harvard.edu/abs/2010ApOpt..49.6489M},
adsnote = {Provided by the SAO/NASA Astrophysics Data System}
}
*/
/*
* n'th column of array m is polynomial of n'th degree,
* m'th row is m'th data point
*
* We fill matrix with polynomials by known datapoints coordinates,
* after that by less-square fit we get coefficients of decomposition
*/
double *LS_decompose(int Nmax, int Sz, polar *P, double *heights, int *Zsz, int *lastIdx){
int pmax = (Nmax + 1) * (Nmax + 2) / 2; // max Z number in Noll notation
if(Zsz) *Zsz = pmax;
/*
(from GSL)
typedef struct {
size_t size1; // rows (height)
size_t size2; // columns (width)
size_t tda; // data width (aligned) - data stride
double * data; // pointer to block->data (matrix data itself)
gsl_block * block; // block with matrix data (block->size is size)
int owner; // ==1 if matrix owns 'block' (then block will be freed with matrix)
} gsl_matrix;
*/
// Now allocate matrix: its Nth row is equation for Nth data point,
// Mth column is Z_M
gsl_matrix *M = gsl_matrix_calloc(Sz, pmax);
// fill matrix with coefficients
int x,y;
size_t T = M->tda;
for(x = 0; x < pmax; x++){
double norm, *Zcoeff = zernfunNR(x, Sz, P, &norm), *Zptr = Zcoeff;
double *ptr = &(M->data[x]);
for(y = 0; y < Sz; y++, ptr+=T, Zptr++) // fill xth polynomial
*ptr = (*Zptr);
FREE(Zcoeff);
}
gsl_vector *ans = gsl_vector_calloc(pmax);
gsl_vector_view b = gsl_vector_view_array(heights, Sz);
gsl_vector *tau = gsl_vector_calloc(pmax); // min(size(M))
gsl_linalg_QR_decomp(M, tau);
gsl_vector *residual = gsl_vector_calloc(Sz);
gsl_linalg_QR_lssolve(M, tau, &b.vector, ans, residual);
double *ptr = ans->data;
int maxIdx = 0;
double *Zidxs = MALLOC(double, pmax);
for(x = 0; x < pmax; x++, ptr++){
if(fabs(*ptr) < Z_prec) continue;
Zidxs[x] = *ptr;
maxIdx = x;
}
gsl_matrix_free(M);
gsl_vector_free(ans);
gsl_vector_free(tau);
gsl_vector_free(residual);
if(lastIdx) *lastIdx = maxIdx;
return Zidxs;
}
/**
* Pseudo-annular Zernike polynomials
* They are just a linear composition of Zernike, made by Gram-Schmidt ortogonalisation
* Real Zernike koefficients restored by reverce transformation matrix
*
* Suppose we have a wavefront data in set of scattered points ${(x,y)}$, we want to
* find Zernike coefficients $z$ such that product of Zernike polynomials, $Z$, and
* $z$ give us that wavefront data with very little error (depending on $Z$ degree).
*
* Of cource, $Z$ isn't orthonormal on our basis, so we need to create some intermediate
* polynomials, $U$, which will be linear dependent from $Z$ (and this dependency
* should be strict and reversable, otherwise we wouldn't be able to reconstruct $z$
* from $u$): $U = Zk$. So, we have: $W = Uu + \epsilon$ and $W = Zz + \epsilon$.
*
* $U$ is orthonormal, so $U^T = U^{-1}$ and (unlike to $Z$) this reverce matrix
* exists and is unique. This mean that $u = W^T U = U^T W$.
* Coefficients matrix, $k$ must be inversable, so $Uk^{-1} = Z$, this mean that
* $z = uk^{-1}$.
*
* Our main goal is to find this matrix, $k$.
*
* 1. QR-decomposition
* R. Navarro and J. Arines. Complete Modal Representation with Discrete Zernike
* Polynomials - Critical Sampling in Non Redundant Grids. INTECH Open Access
* Publisher, 2011.
*
* In this case non-orthogonal matrix $Z$ decomposed to orthogonal matrix $Q$ and
* right-triangular matrix $R$. In our case $Q$ is $U$ itself and $R$ is $k^{-1}$.
* QR-decomposition gives us an easy way to compute coefficient's matrix, $k$.
* Polynomials in $Q$ are linear-dependent from $Z$, each $n^{th}$ polynomial in $Q$
* depends from first $n$ polynomials in $Z$. So, columns of $R$ are coefficients
* for making $U$ from $Z$; rows in $R$ are coefficients for making $z$ from $u$.
*
* 2. Cholesky decomposition
* In this case for any non-orthogonal matrix with real values we have:
* $A^{T}A = LL^{T}$, where $L$ is left-triangular matrix.
* Orthogonal basis made by equation $U = A(L^{-1})^T$. And, as $A = UL^T$, we
* can reconstruct coefficients matrix: $k = (L^{-1})^T$.
*/
double *QR_decompose(int Nmax, int Sz, polar *P, double *heights, int *Zsz, int *lastIdx){
int pmax = (Nmax + 1) * (Nmax + 2) / 2; // max Z number in Noll notation
if(Sz < pmax) ERRX(_("Number of points must be >= number of polynomials!"));
if(Zsz) *Zsz = pmax;
int k, x,y;
//make new polar
polar *Pn = conv_r(P, Sz);
// Now allocate matrix: its Nth row is equation for Nth data point,
// Mth column is Z_M
gsl_matrix *M = gsl_matrix_calloc(Sz, pmax);
// Q-matrix (its first pmax columns is our basis)
gsl_matrix *Q = gsl_matrix_calloc(Sz, Sz);
// R-matrix (coefficients)
gsl_matrix *R = gsl_matrix_calloc(Sz, pmax);
// fill matrix with coefficients
size_t T = M->tda;
for(x = 0; x < pmax; x++){
double norm, *Zcoeff = zernfunNR(x, Sz, Pn, &norm), *Zptr = Zcoeff;
double *ptr = &(M->data[x]);
for(y = 0; y < Sz; y++, ptr+=T, Zptr++) // fill xth polynomial
*ptr = (*Zptr) / norm;
FREE(Zcoeff);
}
gsl_vector *tau = gsl_vector_calloc(pmax); // min(size(M))
gsl_linalg_QR_decomp(M, tau);
gsl_linalg_QR_unpack(M, tau, Q, R);
//print_matrix(R);
gsl_matrix_free(M);
gsl_vector_free(tau);
double *Zidxs = MALLOC(double, pmax);
T = Q->tda;
size_t Tr = R->tda;
for(k = 0; k < pmax; k++){ // cycle by powers
double sumD = 0.;
double *Qptr = &(Q->data[k]);
for(y = 0; y < Sz; y++, Qptr+=T){ // cycle by points
sumD += heights[y] * (*Qptr);
}
Zidxs[k] = sumD;
}
gsl_matrix_free(Q);
// now restore Zernike coefficients
double *Zidxs_corr = MALLOC(double, pmax);
int maxIdx = 0;
for(k = 0; k < pmax; k++){
double sum = 0.;
double *Rptr = &(R->data[k*(Tr+1)]), *Zptr = &(Zidxs[k]);
for(x = k; x < pmax; x++, Zptr++, Rptr++){
sum += (*Zptr) * (*Rptr);
}
if(fabs(sum) < Z_prec) continue;
Zidxs_corr[k] = sum;
maxIdx = k;
}
gsl_matrix_free(R);
FREE(Zidxs);
FREE(Pn);
if(lastIdx) *lastIdx = maxIdx;
return Zidxs_corr;
}
/**
* Components of Zj gradient without constant factor
* @param n,m - orders of polynomial
* @param Sz - number of points
* @param P (i) - coordinates of reference points
* @param norm (o) - norm factor or NULL
* @return array of gradient's components
*/
point *gradZR(int n, int m, int Sz, polar *P, double *norm){
if(check_parameters(n, m, Sz, P)) return NULL;
point *gZ = NULL;
int j, k, m_abs = iabs(m), iup = (n-m_abs)/2, isum = (n+m_abs)/2;
double **Rpow = build_rpowR(n, Sz, P);
// now fill output matrix
gZ = MALLOC(point, Sz);
point *Zptr = gZ;
double ZSum = 0.;
polar *p = P;
for(j = 0; j < Sz; j++, p++, Zptr++){
if(p->r > 1.) continue; // throw out points with R>1
double theta = p->theta;
// components of grad Zj:
// 1. Theta_j; 2. dTheta_j/Dtheta
double Tj = 1., dTj = 0.;
if(m){
double costm, sintm;
sincos(theta*(double)m_abs, &sintm, &costm);
if(m > 0){
Tj = costm;
dTj = -m_abs * sintm;
}else{
Tj = sintm;
dTj = m_abs * costm;
}
}
// 3. R_j & dR_j/dr
double Rj = 0., dRj = 0.;
for(k = 0; k <= iup; k++){
double rj = (1. - 2. * (k % 2)) * FK[n - k] // (-1)^k * (n-k)!
/(//----------------------------------- ----- -------------------------------
FK[k]*FK[isum-k]*FK[iup-k] // k!((n+|m|)/2-k)!((n-|m|)/2-k)!
);
//DBG("rj = %g (n=%d, k=%d)\n",rj, n, k);
int kidx = n - 2*k;
Rj += rj * Rpow[kidx][j]; // *R^{n-2k}
if(kidx > 0)
dRj += rj * kidx * Rpow[kidx - 1][j]; // *(n-2k)*R^{n-2k-1}
}
// normalisation for Zernike
double eps_m = (m) ? 1. : 2., sq = sqrt(2.*(double)(n+1) / M_PI / eps_m);
Rj *= sq, dRj *= sq;
// 4. sin/cos
double sint, cost;
sincos(theta, &sint, &cost);
// projections of gradZj
double TdR = Tj * dRj, RdT = Rj * dTj / p->r;
Zptr->x = TdR * cost - RdT * sint;
Zptr->y = TdR * sint + RdT * cost;
// norm factor
ZSum += Zptr->x * Zptr->x + Zptr->y * Zptr->y;
}
if(norm) *norm = ZSum;
// free unneeded memory
free_rpow(&Rpow, n);
return gZ;
}
/**
* Build components of vector polynomial Sj
* @param p - index of polynomial
* @param Sz - number of points
* @param P (i) - coordinates of reference points
* @param norm (o) - norm factor or NULL
* @return Sj(n,m) on image points
*/
point *zerngradR(int p, int Sz, polar *P, double *norm){
int n, m, i;
convert_Zidx(p, &n, &m);
if(n < 1) ERRX(_("Order of gradient Z must be > 0!"));
int m_abs = iabs(m);
double Zsum, K = 1.;
point *Sj = gradZR(n, m, Sz, P, &Zsum);
if(n != m_abs && n > 2){ // avoid trivial case: n = |m| (in case of n=2,m=0 n'=0 -> grad(0,0)=0
K = sqrt(((double)n+1.)/(n-1.));
Zsum = 0.;
point *Zj= gradZR(n-2, m, Sz, P, NULL);
point *Sptr = Sj, *Zptr = Zj;
for(i = 0; i < Sz; i++, Sptr++, Zptr++){
Sptr->x -= K * Zptr->x;
Sptr->y -= K * Zptr->y;
Zsum += Sptr->x * Sptr->x + Sptr->y * Sptr->y;
}
FREE(Zj);
}
if(norm) *norm = Zsum;
return Sj;
}
/**
* Decomposition of image with normals to wavefront by Zhao's polynomials
* by least squares method through LU-decomposition
* @param Nmax (i) - maximum power of Zernike polinomial for decomposition
* @param Sz, P(i) - size (Sz) of points array (P)
* @param grads(i) - wavefront gradients values in points P
* @param Zsz (o) - size of Z coefficients array
* @param lastIdx(o) - (if !NULL) last non-zero coefficient
* @return array of coefficients
*/
double *LS_gradZdecomposeR(int Nmax, int Sz, polar *P, point *grads, int *Zsz, int *lastIdx){
int pmax = (Nmax + 1) * (Nmax + 2) / 2; // max Z number in Noll notation
if(Zsz) *Zsz = pmax;
// Now allocate matrix: its Nth row is equation for Nth data point,
// Mth column is Z_M
int Sz2 = Sz*2, x, y;
gsl_matrix *M = gsl_matrix_calloc(Sz2, pmax);
// fill matrix with coefficients
size_t T = M->tda, S = T * Sz; // T is matrix stride, S - index of second coefficient
for(x = 1; x < pmax; x++){
double norm;
int n, m;
convert_Zidx(x, &n, &m);
point *dZcoeff = gradZR(n, m, Sz, P, &norm), *dZptr = dZcoeff;
//point *dZcoeff = zerngradR(x, Sz, P, &norm), *dZptr = dZcoeff;
double *ptr = &(M->data[x]);
// X-component is top part of resulting matrix, Y is bottom part
for(y = 0; y < Sz; y++, ptr+=T, dZptr++){ // fill xth polynomial
*ptr = dZptr->x;
ptr[S] = dZptr->y;
}
FREE(dZcoeff);
}
gsl_vector *ans = gsl_vector_calloc(pmax);
gsl_vector *b = gsl_vector_calloc(Sz2);
double *ptr = b->data;
for(x = 0; x < Sz; x++, ptr++, grads++){
// fill components of vector b like components of matrix M
*ptr = grads->x;
ptr[Sz] = grads->y;
}
gsl_vector *tau = gsl_vector_calloc(pmax);
gsl_linalg_QR_decomp(M, tau);
gsl_vector *residual = gsl_vector_calloc(Sz2);
gsl_linalg_QR_lssolve(M, tau, b, ans, residual);
ptr = &ans->data[1];
int maxIdx = 0;
double *Zidxs = MALLOC(double, pmax);
for(x = 1; x < pmax; x++, ptr++){
if(fabs(*ptr) < Z_prec) continue;
Zidxs[x] = *ptr;
maxIdx = x;
}
gsl_matrix_free(M);
gsl_vector_free(ans);
gsl_vector_free(b);
gsl_vector_free(tau);
gsl_vector_free(residual);
if(lastIdx) *lastIdx = maxIdx;
return Zidxs;
}
/**
* Decomposition of image with normals to wavefront by Zhao's polynomials
* @param Nmax (i) - maximum power of Zernike polinomial for decomposition
* @param Sz, P(i) - size (Sz) of points array (P)
* @param grads(i) - wavefront gradients values in points P
* @param Zsz (o) - size of Z coefficients array
* @param lastIdx(o) - (if !NULL) last non-zero coefficient
* @return array of coefficients
*/
double *gradZdecomposeR(int Nmax, int Sz, polar *P, point *grads, int *Zsz, int *lastIdx){
int i, pmax, maxIdx = 0;
pmax = (Nmax + 1) * (Nmax + 2) / 2; // max Z number in Noll notation
double *Zidxs = MALLOC(double, pmax);
point *icopy = MALLOC(point, Sz);
memcpy(icopy, grads, Sz*sizeof(point)); // make image copy to leave it unchanged
*Zsz = pmax;
for(i = 1; i < pmax; i++){ // now we fill array
double norm;
point *dZcoeff = zerngradR(i, Sz, P, &norm);
int j;
point *iptr = icopy, *zptr = dZcoeff;
double K = 0.;
for(j = 0; j < Sz; j++, iptr++, zptr++)
K += zptr->x*iptr->x + zptr->y*iptr->y; // multiply matrixes to get coefficient
K /= norm;
if(fabs(K) < Z_prec)
continue; // there's no need to substract values that are less than our precision
Zidxs[i] = K;
maxIdx = i;
iptr = icopy; zptr = dZcoeff;
for(j = 0; j < Sz; j++, iptr++, zptr++){
iptr->x -= K * zptr->x; // subtract composed coefficient to reduce high orders values
iptr->y -= K * zptr->y;
}
FREE(dZcoeff);
}
if(lastIdx) *lastIdx = maxIdx;
FREE(icopy);
return Zidxs;
}
/**
* Restoration of wavefront normals by given Zhao's polynomials coefficients
* all like Zcompose, but `Zidxs` are Zhao's (not direct Zernike)!
* @return restored image
*/
point *gradZcomposeR(int Zsz, double *Zidxs, int Sz, polar *P){
int i;
point *image = MALLOC(point, Sz);
for(i = 1; i < Zsz; i++){ // now we fill array
double K = Zidxs[i];
if(fabs(K) < Z_prec) continue;
point *Zcoeff = zerngradR(i, Sz, P, NULL);
int j;
point *iptr = image, *zptr = Zcoeff;
for(j = 0; j < Sz; j++, iptr++, zptr++){
iptr->x += K * zptr->x;
iptr->y += K * zptr->y;
}
FREE(Zcoeff);
}
return image;
}
/**
* Direct gradients of Zernike polynomials
*/
point *directGradZcomposeR(int Zsz, double *Zidxs, int Sz, polar *P){
point *image = MALLOC(point, Sz);
for(int p = 1; p < Zsz; ++p){
int n, m;
double K = Zidxs[p];
convert_Zidx(p, &n, &m);
point *Zcoeff = gradZR(n, m, Sz, P, NULL);
point *iptr = image, *zptr = Zcoeff;
for(int j = 0; j < Sz; ++j, ++iptr, ++zptr){
iptr->x += K * zptr->x;
iptr->y += K * zptr->y;
}
FREE(Zcoeff);
}
return image;
}
/**
* Direct decomposition of image with normals to wavefront by Zernike gradients
* @param Nmax (i) - maximum power of Zernike polinomial for decomposition
* @param Sz, P(i) - size (Sz) of points array (P)
* @param grads(i) - wavefront gradients values in points P
* @param Zsz (o) - size of Z coefficients array
* @param lastIdx(o) - (if !NULL) last non-zero coefficient
* @return array of coefficients
*/
double *directGradZdecomposeR(int Nmax, int Sz, polar *P, point *grads, int *Zsz, int *lastIdx){
int i, pmax, maxIdx = 0;
pmax = (Nmax + 1) * (Nmax + 2) / 2; // max Z number in Noll notation
double *Zidxs = MALLOC(double, pmax);
point *icopy = MALLOC(point, Sz);
memcpy(icopy, grads, Sz*sizeof(point)); // make image copy to leave it unchanged
*Zsz = pmax;
for(i = 1; i < pmax; i++){ // now we fill array
double norm;
int n, m;
convert_Zidx(i, &n, &m);
point *dZcoeff = gradZR(n, m, Sz, P, &norm);
int j;
point *iptr = icopy, *zptr = dZcoeff;
double K = 0.;
for(j = 0; j < Sz; j++, iptr++, zptr++)
K += zptr->x*iptr->x + zptr->y*iptr->y;
K /= norm;
if(fabs(K) < Z_prec)
continue; // there's no need to substract values that are less than our precision
Zidxs[i] = K;
maxIdx = i;
iptr = icopy; zptr = dZcoeff;
for(j = 0; j < Sz; j++, iptr++, zptr++){
iptr->x -= K * zptr->x; // subtract composed coefficient to reduce high orders values
iptr->y -= K * zptr->y;
}
FREE(dZcoeff);
}
if(lastIdx) *lastIdx = maxIdx;
FREE(icopy);
return Zidxs;
}