zerndeco/zernike.c
2016-07-14 09:47:49 +03:00

495 lines
15 KiB
C

/*
* zernike.c - wavefront decomposition using Zernike polynomials
*
* Copyright 2013 Edward V. Emelianoff <eddy@sao.ru>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
* MA 02110-1301, USA.
*/
/*
* Literature:
@ARTICLE{2007OExpr..1518014Z,
author = {{Zhao}, C. and {Burge}, J.~H.},
title = "{Orthonormal vector polynomials in a unit circle Part I: basis set derived from gradients of Zernike polynomials}",
journal = {Optics Express},
year = 2007,
volume = 15,
pages = {18014},
doi = {10.1364/OE.15.018014},
adsurl = {http://adsabs.harvard.edu/abs/2007OExpr..1518014Z},
adsnote = {Provided by the SAO/NASA Astrophysics Data System}
}
@ARTICLE{2008OExpr..16.6586Z,
author = {{Zhao}, C. and {Burge}, J.~H.},
title = "{Orthonormal vector polynomials in a unit circle, Part II : completing the basis set}",
journal = {Optics Express},
year = 2008,
month = apr,
volume = 16,
pages = {6586},
doi = {10.1364/OE.16.006586},
adsurl = {http://adsabs.harvard.edu/abs/2008OExpr..16.6586Z},
adsnote = {Provided by the SAO/NASA Astrophysics Data System}
}
*
* !!!ATTENTION!!! Axe Y points upside-down!
*/
#include "zernike.h"
#include "zern_private.h"
#include "usefull_macros.h"
double *FK = NULL;
/**
* Build pre-computed array of factorials from 1 to 100
*/
void build_factorial(){
double F = 1.;
int i;
if(FK) return;
FK = MALLOC(double, 100);
FK[0] = 1.;
for(i = 1; i < 100; i++)
FK[i] = (F *= (double)i);
}
double Z_prec = 1e-6; // precision of Zernike coefficients
/**
* Convert polynomial order in Noll notation into n/m
* @param p (i) - order of Zernike polynomial in Noll notation
* @param N (o) - order of polynomial
* @param M (o) - angular parameter
*/
void convert_Zidx(int p, int *N, int *M){
int n = (int) floor((-1.+sqrt(1.+8.*p)) / 2.);
*M = (int)(2.0*(p - n*(n+1.)/2. - 0.5*(double)n));
*N = n;
}
/**
* Free array of R powers with power n
* @param Rpow (i) - array to free
* @param n - power of Zernike polinomial for that array (array size = n+1)
*/
void free_rpow(double ***Rpow, int n){
int i, N = n+1;
for(i = 0; i < N; i++) FREE((*Rpow)[i]);
FREE(*Rpow);
}
/**
* Build two arrays: with R and its powers (from 0 to n inclusive)
* for cartesian quoter I of matrix with size WxH
* @param W, H - size of initial matrix
* @param n - power of Zernike polinomial (array size = n+1)
* @param Rad (o) - NULL or array with R in quater I
* @param Rad_pow (o) - NULL or array with powers of R
*/
void build_rpow(int W, int H, int n, double **Rad, double ***Rad_pow){
double Rnorm = fmax((W - 1.) / 2., (H - 1.) / 2.);
int i,j, k, N = n+1, w = (W+1)/2, h = (H+1)/2, S = w*h;
double **Rpow = MALLOC(double*, N); // powers of R
Rpow[0] = MALLOC(double, S);
for(j = 0; j < S; j++) Rpow[0][j] = 1.; // zero's power
double *R = MALLOC(double, S);
// first - fill array of R
double xstart = (W%2) ? 0. : 0.5, ystart = (H%2) ? 0. : 0.5;
for(j = 0; j < h; j++){
double *pt = &R[j*w], x, ww = w;
for(x = xstart; x < ww; x++, pt++){
double yy = (j + ystart)/Rnorm, xx = x/Rnorm;
*pt = sqrt(xx*xx+yy*yy);
}
}
for(i = 1; i < N; i++){ // Rpow - is quater I of cartesian coordinates ('cause other are fully simmetrical)
Rpow[i] = MALLOC(double, S);
double *rp = Rpow[i], *rpo = Rpow[i-1];
for(j = 0; j < h; j++){
int idx = j*w;
double *pt = &rp[idx], *pto = &rpo[idx], *r = &R[idx];
for(k = 0; k < w; k++, pt++, pto++, r++)
*pt = (*pto) * (*r); // R^{n+1} = R^n * R
}
}
if(Rad) *Rad = R;
else FREE(R);
if(Rad_pow) *Rad_pow = Rpow;
else free_rpow(&Rpow, n);
}
/**
* Calculate value of Zernike polynomial on rectangular matrix WxH pixels
* Center of matrix will be zero point
* Scale will be set by max(W/2,H/2)
* @param n - order of polynomial (max: 100!)
* @param m - angular parameter of polynomial
* @param W - width of output array
* @param H - height of output array
* @param norm (o) - (if !NULL) normalize factor
* @return array of Zernike polynomials on given matrix
*/
double *zernfun(int n, int m, int W, int H, double *norm){
double Z = 0., *Zarr = NULL;
bool erparm = false;
if(W < 2 || H < 2)
errx(1, "Sizes of matrix must be > 2!");
if(n > 100)
errx(1, "Order of Zernike polynomial must be <= 100!");
if(n < 0) erparm = true;
if(n < iabs(m)) erparm = true; // |m| must be <= n
int d = n - m;
if(d % 2) erparm = true; // n-m must differ by a prod of 2
if(erparm)
errx(1, "Wrong parameters of Zernike polynomial (%d, %d)", n, m);
if(!FK) build_factorial();
double Xc = (W - 1.) / 2., Yc = (H - 1.) / 2.; // coordinate of circle's middle
int i, j, k, m_abs = iabs(m), iup = (n-m_abs)/2, w = (W+1)/2;
double *R, **Rpow;
build_rpow(W, H, n, &R, &Rpow);
int SS = W * H;
double ZSum = 0.;
// now fill output matrix
Zarr = MALLOC(double, SS); // output matrix W*H pixels
for(j = 0; j < H; j++){
double *Zptr = &Zarr[j*W];
double Ryd = fabs(j - Yc);
int Ry = w * (int)Ryd; // Y coordinate on R matrix
for(i = 0; i < W; i++, Zptr++){
Z = 0.;
double Rxd = fabs(i - Xc);
int Ridx = Ry + (int)Rxd; // coordinate on R matrix
if(R[Ridx] > 1.) continue; // throw out points with R>1
// calculate R_n^m
for(k = 0; k <= iup; k++){ // Sum
double z = (1. - 2. * (k % 2)) * FK[n - k] // (-1)^k * (n-k)!
/(//----------------------------------- ----- -------------------------------
FK[k]*FK[(n+m_abs)/2-k]*FK[(n-m_abs)/2-k] // k!((n+|m|)/2-k)!((n-|m|)/2-k)!
);
Z += z * Rpow[n-2*k][Ridx]; // *R^{n-2k}
}
// normalize
double eps_m = (m) ? 1. : 2.;
Z *= sqrt(2.*(n+1.) / M_PI / eps_m);
double theta = atan2(j - Yc, i - Xc);
// multiply to angular function:
if(m){
if(m > 0)
Z *= cos(theta*(double)m_abs);
else
Z *= sin(theta*(double)m_abs);
}
*Zptr = Z;
ZSum += Z*Z;
}
}
if(norm) *norm = ZSum;
// free unneeded memory
FREE(R);
free_rpow(&Rpow, n);
return Zarr;
}
/**
* Zernike polynomials in Noll notation for square matrix
* @param p - index of polynomial
* @other params are like in zernfun
* @return zernfun
*/
double *zernfunN(int p, int W, int H, double *norm){
int n, m;
convert_Zidx(p, &n, &m);
return zernfun(n,m,W,H,norm);
}
/**
* Zernike decomposition of image 'image' WxH pixels
* @param Nmax (i) - maximum power of Zernike polinomial for decomposition
* @param W, H (i) - size of image
* @param image(i) - image itself
* @param Zsz (o) - size of Z coefficients array
* @param lastIdx (o) - (if !NULL) last non-zero coefficient
* @return array of Zernike coefficients
*/
double *Zdecompose(int Nmax, int W, int H, double *image, int *Zsz, int *lastIdx){
int i, SS = W*H, pmax, maxIdx = 0;
double *Zidxs = NULL, *icopy = NULL;
pmax = (Nmax + 1) * (Nmax + 2) / 2; // max Z number in Noll notation
Zidxs = MALLOC(double, pmax);
icopy = MALLOC(double, W*H);
memcpy(icopy, image, W*H*sizeof(double)); // make image copy to leave it unchanged
*Zsz = pmax;
for(i = 0; i < pmax; i++){ // now we fill array
double norm, *Zcoeff = zernfunN(i, W, H, &norm);
int j;
double *iptr = icopy, *zptr = Zcoeff, K = 0.;
for(j = 0; j < SS; j++, iptr++, zptr++)
K += (*zptr) * (*iptr) / norm; // multiply matrixes to get coefficient
Zidxs[i] = K;
if(fabs(K) < Z_prec){
Zidxs[i] = 0.;
continue; // there's no need to substract values that are less than our precision
}
maxIdx = i;
iptr = icopy; zptr = Zcoeff;
for(j = 0; j < SS; j++, iptr++, zptr++)
*iptr -= K * (*zptr); // subtract composed coefficient to reduce high orders values
FREE(Zcoeff);
}
if(lastIdx) *lastIdx = maxIdx;
FREE(icopy);
return Zidxs;
}
/**
* Zernike restoration of image WxH pixels by Zernike polynomials coefficients
* @param Zsz (i) - number of elements in coefficients array
* @param Zidxs(i) - array with Zernike coefficients
* @param W, H (i) - size of image
* @return restored image
*/
double *Zcompose(int Zsz, double *Zidxs, int W, int H){
int i, SS = W*H;
double *image = MALLOC(double, SS);
for(i = 0; i < Zsz; i++){ // now we fill array
double K = Zidxs[i];
if(fabs(K) < Z_prec) continue;
double *Zcoeff = zernfunN(i, W, H, NULL);
int j;
double *iptr = image, *zptr = Zcoeff;
for(j = 0; j < SS; j++, iptr++, zptr++)
*iptr += K * (*zptr); // add next Zernike polynomial
FREE(Zcoeff);
}
return image;
}
/**
* Components of Zj gradient without constant factor
* all parameters are as in zernfun
* @return array of gradient's components
*/
point *gradZ(int n, int m, int W, int H, double *norm){
point *gZ = NULL;
bool erparm = false;
if(W < 2 || H < 2)
errx(1, "Sizes of matrix must be > 2!");
if(n > 100)
errx(1, "Order of gradient of Zernike polynomial must be <= 100!");
if(n < 1) erparm = true;
if(n < iabs(m)) erparm = true; // |m| must be <= n
int d = n - m;
if(d % 2) erparm = true; // n-m must differ by a prod of 2
if(erparm)
errx(1, "Wrong parameters of gradient of Zernike polynomial (%d, %d)", n, m);
if(!FK) build_factorial();
double Xc = (W - 1.) / 2., Yc = (H - 1.) / 2.; // coordinate of circle's middle
int i, j, k, m_abs = iabs(m), iup = (n-m_abs)/2, isum = (n+m_abs)/2, w = (W+1)/2;
double *R, **Rpow;
build_rpow(W, H, n, &R, &Rpow);
int SS = W * H;
// now fill output matrix
gZ = MALLOC(point, SS);
double ZSum = 0.;
for(j = 0; j < H; j++){
point *Zptr = &gZ[j*W];
double Ryd = fabs(j - Yc);
int Ry = w * (int)Ryd; // Y coordinate on R matrix
for(i = 0; i < W; i++, Zptr++){
double Rxd = fabs(i - Xc);
int Ridx = Ry + (int)Rxd; // coordinate on R matrix
double Rcurr = R[Ridx];
if(Rcurr > 1. || fabs(Rcurr) < DBL_EPSILON) continue; // throw out points with R>1
double theta = atan2(j - Yc, i - Xc);
// components of grad Zj:
// 1. Theta_j
double Tj = 1., costm, sintm;
sincos(theta*(double)m_abs, &sintm, &costm);
if(m){
if(m > 0)
Tj = costm;
else
Tj = sintm;
}
// 2. dTheta_j/Dtheta
double dTj = 0.;
if(m){
if(m < 0)
dTj = m_abs * costm;
else
dTj = -m_abs * sintm;
}
// 3. R_j & dR_j/dr
double Rj = 0., dRj = 0.;
for(k = 0; k <= iup; k++){
double rj = (1. - 2. * (k % 2)) * FK[n - k] // (-1)^k * (n-k)!
/(//----------------------------------- ----- -------------------------------
FK[k]*FK[isum-k]*FK[iup-k] // k!((n+|m|)/2-k)!((n-|m|)/2-k)!
);
//DBG("rj = %g (n=%d, k=%d)\n",rj, n, k);
int kidx = n - 2*k;
Rj += rj * Rpow[kidx][Ridx]; // *R^{n-2k}
if(kidx > 0)
dRj += rj * kidx * Rpow[kidx - 1][Ridx];
}
// normalisation for Zernike
double eps_m = (m) ? 1. : 2., sq = sqrt(2.*(double)(n+1) / M_PI / eps_m);
Rj *= sq, dRj *= sq;
// 4. sin/cos
double sint, cost;
sincos(theta, &sint, &cost);
// projections of gradZj
double TdR = Tj * dRj, RdT = Rj * dTj / Rcurr;
Zptr->x = TdR * cost - RdT * sint;
Zptr->y = TdR * sint + RdT * cost;
// norm factor
ZSum += Zptr->x * Zptr->x + Zptr->y * Zptr->y;
}
}
if(norm) *norm = ZSum;
// free unneeded memory
FREE(R);
free_rpow(&Rpow, n);
return gZ;
}
/**
* Build components of vector polynomial Sj
* all parameters are as in zernfunN
* @return Sj(n,m) on image points
*/
point *zerngrad(int p, int W, int H, double *norm){
int n, m;
convert_Zidx(p, &n, &m);
if(n < 1) errx(1, "Order of gradient Z must be > 0!");
int m_abs = iabs(m);
int i,j;
double K = 1., K1 = 1.;///sqrt(2.*n*(n+1.));
point *Sj = MALLOC(point, W*H);
point *Zj = gradZ(n, m, W, H, NULL);
double Zsum = 0.;
if(n == m_abs || n < 3){ // trivial case: n = |m| (in case of n=2,m=0 n'=0 -> grad(0,0)=0
for(j = 0; j < H; j++){
int idx = j*W;
point *Sptr = &Sj[idx], *Zptr = &Zj[idx];
for(i = 0; i < W; i++, Sptr++, Zptr++){
Sptr->x = K1*Zptr->x;
Sptr->y = K1*Zptr->y;
Zsum += Sptr->x * Sptr->x + Sptr->y * Sptr->y;
}
}
}else{
K = sqrt(((double)n+1.)/(n-1.));
//K1 /= sqrt(2.);
// n != |m|
// I run gradZ() twice! But another variant (to make array of Zj) can meet memory lack
point *Zj_= gradZ(n-2, m, W, H, NULL);
for(j = 0; j < H; j++){
int idx = j*W;
point *Sptr = &Sj[idx], *Zptr = &Zj[idx], *Z_ptr = &Zj_[idx];
for(i = 0; i < W; i++, Sptr++, Zptr++, Z_ptr++){
Sptr->x = K1*(Zptr->x - K * Z_ptr->x);
Sptr->y = K1*(Zptr->y - K * Z_ptr->y);
Zsum += Sptr->x * Sptr->x + Sptr->y * Sptr->y;
}
}
FREE(Zj_);
}
FREE(Zj);
if(norm) *norm = Zsum;
return Sj;
}
/**
* Decomposition of image with normals to wavefront by Zhao's polynomials
* all like Zdecompose
* @return array of coefficients
*/
double *gradZdecompose(int Nmax, int W, int H, point *image, int *Zsz, int *lastIdx){
int i, SS = W*H, pmax, maxIdx = 0;
double *Zidxs = NULL;
point *icopy = NULL;
pmax = (Nmax + 1) * (Nmax + 2) / 2; // max Z number in Noll notation
Zidxs = MALLOC(double, pmax);
icopy = MALLOC(point, SS);
memcpy(icopy, image, SS*sizeof(point)); // make image copy to leave it unchanged
*Zsz = pmax;
for(i = 1; i < pmax; i++){ // now we fill array
double norm;
point *dZcoeff = zerngrad(i, W, H, &norm);
int j;
point *iptr = icopy, *zptr = dZcoeff;
double K = 0.;
for(j = 0; j < SS; j++, iptr++, zptr++)
K += (zptr->x*iptr->x + zptr->y*iptr->y) / norm; // multiply matrixes to get coefficient
if(fabs(K) < Z_prec)
continue; // there's no need to substract values that are less than our precision
Zidxs[i] = K;
maxIdx = i;
iptr = icopy; zptr = dZcoeff;
for(j = 0; j < SS; j++, iptr++, zptr++){
iptr->x -= K * zptr->x; // subtract composed coefficient to reduce high orders values
iptr->y -= K * zptr->y;
}
FREE(dZcoeff);
}
if(lastIdx) *lastIdx = maxIdx;
FREE(icopy);
return Zidxs;
}
/**
* Restoration of image with normals Zhao's polynomials coefficients
* all like Zcompose
* @return restored image
*/
point *gradZcompose(int Zsz, double *Zidxs, int W, int H){
int i, SS = W*H;
point *image = MALLOC(point, SS);
for(i = 1; i < Zsz; i++){ // now we fill array
double K = Zidxs[i];
if(fabs(K) < Z_prec) continue;
point *Zcoeff = zerngrad(i, W, H, NULL);
int j;
point *iptr = image, *zptr = Zcoeff;
for(j = 0; j < SS; j++, iptr++, zptr++){
iptr->x += K * zptr->x;
iptr->y += K * zptr->y;
}
FREE(Zcoeff);
}
return image;
}
double *convGradIdxs(double *gradIdxs, int Zsz){
double *idxNew = MALLOC(double, Zsz);
int i;
for(i = 1; i < Zsz; i++){
int n,m;
convert_Zidx(i, &n, &m);
int j = ((n+2)*(n+4) + m) / 2;
if(j >= Zsz) j = 0;
idxNew[i] = (gradIdxs[i] - sqrt((n+3.)/(n+1.))*gradIdxs[j]);
}
return idxNew;
}