/* * main.c * * Copyright 2017 Edward V. Emelianoff * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, * MA 02110-1301, USA. */ #include "hardware.h" #include "usart.h" #include "i2c.h" static uint16_t coefficients[2][5]; // Coefficients for given sensors volatile uint32_t Tms = 0; /* Called when systick fires */ void sys_tick_handler(void){ ++Tms; } // print 32bit unsigned int void printu(uint32_t val){ char buf[11], rbuf[10]; int l = 0, bpos = 0; if(!val){ buf[0] = '0'; l = 1; }else{ while(val){ rbuf[l++] = val % 10 + '0'; val /= 10; } int i; bpos += l; for(i = 0; i < l; ++i){ buf[--bpos] = rbuf[i]; } } while(LINE_BUSY == usart_send_blocking(buf, l+bpos)); } void showcoeffs(uint8_t addr, uint8_t verb){ // show norm coefficiens int i; const uint8_t regs[5] = {0xAA, 0xA8, 0xA6, 0xA4, 0xA2}; // commands for coefficients uint32_t K; char numbr = (addr == TSYS01_ADDR0) ? '0' : '1'; uint16_t *coef = coefficients[numbr-'0']; for(i = 0; i < 5; ++i){ if(write_i2c(addr, regs[i])){ if(read_i2c(addr, &K, 2)){ coef[i] = K; if(verb){ char b[4] = {'K', numbr, i+'0', '='}; while(ALL_OK != usart_send_blocking(b, 4)); printu(K); newline(); } } } } } /** * Get temperature & calculate it by polinome * T = (-2) * k4 * 10^{-21} * ADC16^4 * + 4 * k3 * 10^{-16} * ADC16^3 * + (-2) * k2 * 10^{-11} * ADC16^2 * + 1 * k1 * 10^{-6} * ADC16 * +(-1.5)* k0 * 10^{-2} * k0*(-1.5e-2) + 1e-6*val*(k1 + 1e-5*val*(-2*k2 + 1e-5*val*(4*k3 + -2e-5*k4*val))) * answer is in 100th */ uint8_t calc_t(uint32_t t, int i){ if(coefficients[i][0] == 0){ if(i == 0) showcoeffs(TSYS01_ADDR0, 0); else showcoeffs(TSYS01_ADDR1, 0); } if(coefficients[i][0] == 0){ SEND("no sensor\n"); return 0; } if (t < 6500000 || t > 13000000) return 0; // wrong value - too small or too large int j; double d = (double)t/256., tmp = 0.; // k0*(-1.5e-2) + 0.1*1e-5*val*(1*k1 + 1e-5*val*(-2.*k2 + 1e-5*val*(4*k3 + 1e-5*val*(-2*k4)))) const double mul[5] = {-1.5e-2, 1., -2., 4., -2.}; for(j = 4; j > 0; --j){ tmp += mul[j] * (double)coefficients[i][j]; tmp *= 1e-5*d; } tmp = tmp/10. + mul[0]*coefficients[i][0]; char b[8] = "TdegC0="; if(i) b[5] = '1'; while(ALL_OK != usart_send_blocking(b, 7)); if(tmp < 0.){ SEND("-"); tmp = -tmp; } uint32_t x = (uint32_t)tmp; if(x > 120) return 0; // wrong value printu(x); tmp -= x; SEND("."); x = (uint32_t)(tmp*100); if(x < 10) SEND("0"); printu(x); newline(); return 1; } /* uint8_t calc_t(uint32_t t, int i){ if(coefficients[i][0] == 0){ if(i == 0) showcoeffs(TSYS01_ADDR0, 0); else showcoeffs(TSYS01_ADDR1, 0); } if(coefficients[i][0] == 0){ SEND("no sensor\n"); return 0; } if (t < 6500000 || t > 13000000) return 0; // wrong value - too small or too large int j; int64_t d = t, tmp = 0.; // k0*(-1.5e-2) + 0.1*1e-5*val*(1*k1 + 1e-5*val*(-2.*k2 + 1e-5*val*(4*k3 + 1e-5*val*(-2*k4)))) int8_t mul[5] = {0, 1, -2, 4, -2}; for(j = 4; j > 0; --j){ tmp /= 100000; tmp += mul[j] * coefficients[i][j]; tmp *= d; tmp >>= 8; // (/256) } tmp /= 10000; uint16_t K = coefficients[i][0]; K += K/2; tmp -= K; char b[8] = "TdegC0="; if(i) b[5] = '1'; while(ALL_OK != usart_send_blocking(b, 7)); if(tmp < 0.){ SEND("-"); tmp = -tmp; } uint32_t x = (uint32_t)(tmp/100); printu(x); tmp -= 100*x; SEND("."); printu((uint32_t)tmp); newline(); return 1; }*/ int main(void){ uint32_t lastT = 0; int16_t L = 0; uint32_t started0=0, started1=0; // time of measurements for given sensor started char *txt; sysreset(); SysTick_Config(6000, 1); gpio_setup(); usart_setup(); i2c_setup(LOW_SPEED); // reset on start write_i2c(TSYS01_ADDR0, TSYS01_RESET); write_i2c(TSYS01_ADDR1, TSYS01_RESET); while (1){ if(lastT > Tms || Tms - lastT > 499){ LED_blink(LED0); lastT = Tms; } if(started0 && Tms - started0 > CONV_TIME){ // poll sensor0 if(write_i2c(TSYS01_ADDR0, TSYS01_ADC_READ)){ uint32_t t; if(read_i2c(TSYS01_ADDR0, &t, 3) && t){ if(!calc_t(t, 0)) write_i2c(TSYS01_ADDR0, TSYS01_RESET); started0 = 0; } } } if(started1 && Tms - started1 > CONV_TIME){ // poll sensor1 if(write_i2c(TSYS01_ADDR1, TSYS01_ADC_READ)){ uint32_t t; if(read_i2c(TSYS01_ADDR1, &t, 3) && t){ if(!calc_t(t, 1)) write_i2c(TSYS01_ADDR1, TSYS01_RESET); started1 = 0; } } } if(usartrx()){ // usart1 received data, store in in buffer L = usart_getline(&txt); char _1st = txt[0]; if(L == 2 && txt[1] == '\n'){ L = 0; uint32_t tstart = Tms; switch(_1st){ case 'C': // 'C' - show coefficients showcoeffs(TSYS01_ADDR0, 1); showcoeffs(TSYS01_ADDR1, 1); break; case 'R': // 'R' - reset both SEND("Reset\n"); write_i2c(TSYS01_ADDR0, TSYS01_RESET); write_i2c(TSYS01_ADDR1, TSYS01_RESET); break; case 'D': if(write_i2c(TSYS01_ADDR0, TSYS01_RESET)) SEND("0"); if(write_i2c(TSYS01_ADDR1, TSYS01_RESET)) SEND("1"); newline(); break; case 'T': // 'T' - get temperature if(tstart == 0) tstart = 1; if(write_i2c(TSYS01_ADDR0, TSYS01_START_CONV)) started0 = tstart; else{ started0 = 0; } if(write_i2c(TSYS01_ADDR1, TSYS01_START_CONV)) started1 = tstart; else{ started1 = 0; } break; case 'L': i2c_setup(LOW_SPEED); SEND("Low speed\n"); break; case 'H': i2c_setup(HIGH_SPEED); SEND("High speed\n"); break; default: // help SEND("'C' - show coefficients\n" "'D' - slave discovery\n" "'R' - reset both\n" "'T' - get raw temperature\n" "'L' - low speed\n" "'H' - high speed\n"); break; } } } if(L){ // text waits for sending while(LINE_BUSY == usart_send(txt, L)); L = 0; } } return 0; }