/* * This file is part of the TSYS_controller project. * Copyright 2019 Edward V. Emelianov . * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #include "adc.h" /** * @brief ADC_array - array for ADC channels with median filtering: * 0..3 - external channels * 4 - internal Tsens * 5 - Vref */ #define TSENS_CHAN (NUMBER_OF_ADC_CHANNELS-2) #define VREF_CHAN (NUMBER_OF_ADC_CHANNELS-1) static uint16_t ADC_array[NUMBER_OF_ADC_CHANNELS*9]; /* * ADC channels: * IN0 - V12 * IN1 - V5 * IN3 - I12 * IN6 - V3.3 * IN16- temperature sensor * IN17- vref */ void adc_setup(){ uint16_t ctr = 0; // 0xfff0 - more than 1.3ms // Enable clocking /* (1) Enable the peripheral clock of the ADC */ /* (2) Start HSI14 RC oscillator */ /* (3) Wait HSI14 is ready */ RCC->APB2ENR |= RCC_APB2ENR_ADC1EN; /* (1) */ RCC->CR2 |= RCC_CR2_HSI14ON; /* (2) */ while ((RCC->CR2 & RCC_CR2_HSI14RDY) == 0 && ++ctr < 0xfff0){}; /* (3) */ // calibration /* (1) Ensure that ADEN = 0 */ /* (2) Clear ADEN */ /* (3) Launch the calibration by setting ADCAL */ /* (4) Wait until ADCAL=0 */ if ((ADC1->CR & ADC_CR_ADEN) != 0){ /* (1) */ ADC1->CR &= (uint32_t)(~ADC_CR_ADEN); /* (2) */ } ADC1->CR |= ADC_CR_ADCAL; /* (3) */ ctr = 0; // ADC calibration time is 5.9us while ((ADC1->CR & ADC_CR_ADCAL) != 0 && ++ctr < 0xfff0){}; /* (4) */ // enable ADC ctr = 0; do{ ADC1->CR |= ADC_CR_ADEN; }while ((ADC1->ISR & ADC_ISR_ADRDY) == 0 && ++ctr < 0xfff0); // configure ADC /* (1) Select HSI14 by writing 00 in CKMODE (reset value) */ /* (2) Select the continuous mode */ /* (3) Select CHSEL0,1,3,6 - ADC inputs, 16,17 - t. sensor and vref */ /* (4) Select a sampling mode of 111 i.e. 239.5 ADC clk to be greater than 17.1us */ /* (5) Wake-up the VREFINT and Temperature sensor (only for VBAT, Temp sensor and VRefInt) */ // ADC1->CFGR2 &= ~ADC_CFGR2_CKMODE; /* (1) */ ADC1->CFGR1 |= ADC_CFGR1_CONT; /* (2)*/ ADC1->CHSELR = ADC_CHSELR_CHSEL0 | ADC_CHSELR_CHSEL1 | ADC_CHSELR_CHSEL3 | ADC_CHSELR_CHSEL6 | ADC_CHSELR_CHSEL16 | ADC_CHSELR_CHSEL17; /* (3)*/ ADC1->SMPR |= ADC_SMPR_SMP_0 | ADC_SMPR_SMP_1 | ADC_SMPR_SMP_2; /* (4) */ ADC->CCR |= ADC_CCR_TSEN | ADC_CCR_VREFEN; /* (5) */ // configure DMA for ADC // DMA for AIN /* (1) Enable the peripheral clock on DMA */ /* (2) Enable DMA transfer on ADC and circular mode */ /* (3) Configure the peripheral data register address */ /* (4) Configure the memory address */ /* (5) Configure the number of DMA tranfer to be performs on DMA channel 1 */ /* (6) Configure increment, size, interrupts and circular mode */ /* (7) Enable DMA Channel 1 */ RCC->AHBENR |= RCC_AHBENR_DMA1EN; /* (1) */ ADC1->CFGR1 |= ADC_CFGR1_DMAEN | ADC_CFGR1_DMACFG; /* (2) */ DMA1_Channel1->CPAR = (uint32_t) (&(ADC1->DR)); /* (3) */ DMA1_Channel1->CMAR = (uint32_t)(ADC_array); /* (4) */ DMA1_Channel1->CNDTR = NUMBER_OF_ADC_CHANNELS * 9; /* (5) */ DMA1_Channel1->CCR |= DMA_CCR_MINC | DMA_CCR_MSIZE_0 | DMA_CCR_PSIZE_0 | DMA_CCR_CIRC; /* (6) */ DMA1_Channel1->CCR |= DMA_CCR_EN; /* (7) */ ADC1->CR |= ADC_CR_ADSTART; /* start the ADC conversions */ } /** * @brief getADCval - calculate median value for `nch` channel * @param nch - number of channel * @return */ uint16_t getADCval(int nch){ int i, addr = nch; register uint16_t temp; #define PIX_SORT(a,b) { if ((a)>(b)) PIX_SWAP((a),(b)); } #define PIX_SWAP(a,b) { temp=(a);(a)=(b);(b)=temp; } uint16_t p[9]; for(i = 0; i < 9; ++i, addr += NUMBER_OF_ADC_CHANNELS) // first we should prepare array for optmed p[i] = ADC_array[addr]; PIX_SORT(p[1], p[2]) ; PIX_SORT(p[4], p[5]) ; PIX_SORT(p[7], p[8]) ; PIX_SORT(p[0], p[1]) ; PIX_SORT(p[3], p[4]) ; PIX_SORT(p[6], p[7]) ; PIX_SORT(p[1], p[2]) ; PIX_SORT(p[4], p[5]) ; PIX_SORT(p[7], p[8]) ; PIX_SORT(p[0], p[3]) ; PIX_SORT(p[5], p[8]) ; PIX_SORT(p[4], p[7]) ; PIX_SORT(p[3], p[6]) ; PIX_SORT(p[1], p[4]) ; PIX_SORT(p[2], p[5]) ; PIX_SORT(p[4], p[7]) ; PIX_SORT(p[4], p[2]) ; PIX_SORT(p[6], p[4]) ; PIX_SORT(p[4], p[2]) ; return p[4]; #undef PIX_SORT #undef PIX_SWAP } // return MCU temperature (degrees of celsius * 10) int32_t getMCUtemp(){ // getVdd(); // make correction on Vdd value // int32_t temperature = (int32_t)ADC_array[4] * VddValue / 330; int32_t ADval = getADCval(TSENS_CHAN); int32_t temperature = (int32_t) *TEMP30_CAL_ADDR - ADval; temperature *= (int32_t)(1100 - 300); temperature /= (int32_t)(*TEMP30_CAL_ADDR - *TEMP110_CAL_ADDR); temperature += 300; return(temperature); } // return Vdd * 100 (V) uint32_t getVdd(){ uint32_t vdd = ((uint32_t) *VREFINT_CAL_ADDR) * (uint32_t)330; // 3.3V vdd /= getADCval(VREF_CHAN); return vdd; } static inline uint32_t Ufromadu(uint8_t nch, uint32_t vdd){ uint32_t ADU = getADCval(nch); ADU *= vdd; ADU >>= 12; // /4096 return ADU; } /** * @brief getUval - calculate U & I * @return array with members: * 0 - V12 * 100V (U12 = 12Vin/4.93) * 1 - V5 * 100V (U5 = 5Vin /2) * 2 - I12 mA (U = 1V/1A) * 3 - V3.3* 100V (U3.3= 3.3Vin/2) */ uint16_t *getUval(){ static uint16_t Uval[4]; uint32_t vdd = getVdd(); uint32_t val = Ufromadu(0, vdd) * 493; Uval[0] = (uint16_t)(val / 100); Uval[1] = (uint16_t)(Ufromadu(1, vdd) << 1); val = getADCval(2) * vdd * 10; Uval[2] = (uint16_t)(val >> 12); Uval[3] = (uint16_t)(Ufromadu(3, vdd) << 1); return Uval; }