mirror of
https://github.com/eddyem/stm32samples.git
synced 2025-12-06 10:45:11 +03:00
157 lines
5.7 KiB
C
157 lines
5.7 KiB
C
/*
|
|
* This file is part of the TSYS_controller project.
|
|
* Copyright 2019 Edward V. Emelianov <edward.emelianoff@gmail.com>.
|
|
*
|
|
* This program is free software: you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation, either version 3 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#include "adc.h"
|
|
|
|
/**
|
|
* @brief ADC_array - array for ADC channels with median filtering:
|
|
* 0..3 - external channels
|
|
* 4 - internal Tsens
|
|
* 5 - Vref
|
|
*/
|
|
#define TSENS_CHAN (NUMBER_OF_ADC_CHANNELS-2)
|
|
#define VREF_CHAN (NUMBER_OF_ADC_CHANNELS-1)
|
|
static uint16_t ADC_array[NUMBER_OF_ADC_CHANNELS*9];
|
|
|
|
/*
|
|
* ADC channels:
|
|
* IN0 - V12
|
|
* IN1 - V5
|
|
* IN16- temperature sensor
|
|
* IN17- vref
|
|
*/
|
|
void adc_setup(){
|
|
uint16_t ctr = 0; // 0xfff0 - more than 1.3ms
|
|
// Enable clocking
|
|
/* (1) Enable the peripheral clock of the ADC */
|
|
/* (2) Start HSI14 RC oscillator */
|
|
/* (3) Wait HSI14 is ready */
|
|
RCC->APB2ENR |= RCC_APB2ENR_ADC1EN; /* (1) */
|
|
RCC->CR2 |= RCC_CR2_HSI14ON; /* (2) */
|
|
while ((RCC->CR2 & RCC_CR2_HSI14RDY) == 0 && ++ctr < 0xfff0){}; /* (3) */
|
|
// calibration
|
|
/* (1) Ensure that ADEN = 0 */
|
|
/* (2) Clear ADEN */
|
|
/* (3) Launch the calibration by setting ADCAL */
|
|
/* (4) Wait until ADCAL=0 */
|
|
if ((ADC1->CR & ADC_CR_ADEN) != 0){ /* (1) */
|
|
ADC1->CR &= (uint32_t)(~ADC_CR_ADEN); /* (2) */
|
|
}
|
|
ADC1->CR |= ADC_CR_ADCAL; /* (3) */
|
|
ctr = 0; // ADC calibration time is 5.9us
|
|
while ((ADC1->CR & ADC_CR_ADCAL) != 0 && ++ctr < 0xfff0){}; /* (4) */
|
|
// enable ADC
|
|
ctr = 0;
|
|
do{
|
|
ADC1->CR |= ADC_CR_ADEN;
|
|
}while ((ADC1->ISR & ADC_ISR_ADRDY) == 0 && ++ctr < 0xfff0);
|
|
// configure ADC
|
|
/* (1) Select HSI14 by writing 00 in CKMODE (reset value) */
|
|
/* (2) Select the continuous mode */
|
|
/* (3) Select CHSEL0,1 - ADC inputs, 16,17 - t. sensor and vref */
|
|
/* (4) Select a sampling mode of 111 i.e. 239.5 ADC clk to be greater than 17.1us */
|
|
/* (5) Wake-up the VREFINT and Temperature sensor (only for VBAT, Temp sensor and VRefInt) */
|
|
// ADC1->CFGR2 &= ~ADC_CFGR2_CKMODE; /* (1) */
|
|
ADC1->CFGR1 |= ADC_CFGR1_CONT; /* (2)*/
|
|
ADC1->CHSELR = ADC_CHSELR_CHSEL0 | ADC_CHSELR_CHSEL1 | ADC_CHSELR_CHSEL16 | ADC_CHSELR_CHSEL17; /* (3)*/
|
|
ADC1->SMPR |= ADC_SMPR_SMP_0 | ADC_SMPR_SMP_1 | ADC_SMPR_SMP_2; /* (4) */
|
|
ADC->CCR |= ADC_CCR_TSEN | ADC_CCR_VREFEN; /* (5) */
|
|
// configure DMA for ADC
|
|
// DMA for AIN
|
|
/* (1) Enable the peripheral clock on DMA */
|
|
/* (2) Enable DMA transfer on ADC and circular mode */
|
|
/* (3) Configure the peripheral data register address */
|
|
/* (4) Configure the memory address */
|
|
/* (5) Configure the number of DMA tranfer to be performs on DMA channel 1 */
|
|
/* (6) Configure increment, size, interrupts and circular mode */
|
|
/* (7) Enable DMA Channel 1 */
|
|
RCC->AHBENR |= RCC_AHBENR_DMA1EN; /* (1) */
|
|
ADC1->CFGR1 |= ADC_CFGR1_DMAEN | ADC_CFGR1_DMACFG; /* (2) */
|
|
DMA1_Channel1->CPAR = (uint32_t) (&(ADC1->DR)); /* (3) */
|
|
DMA1_Channel1->CMAR = (uint32_t)(ADC_array); /* (4) */
|
|
DMA1_Channel1->CNDTR = NUMBER_OF_ADC_CHANNELS * 9; /* (5) */
|
|
DMA1_Channel1->CCR |= DMA_CCR_MINC | DMA_CCR_MSIZE_0 | DMA_CCR_PSIZE_0 | DMA_CCR_CIRC; /* (6) */
|
|
DMA1_Channel1->CCR |= DMA_CCR_EN; /* (7) */
|
|
ADC1->CR |= ADC_CR_ADSTART; /* start the ADC conversions */
|
|
}
|
|
|
|
|
|
/**
|
|
* @brief getADCval - calculate median value for `nch` channel
|
|
* @param nch - number of channel
|
|
* @return
|
|
*/
|
|
uint16_t getADCval(int nch){
|
|
int i, addr = nch;
|
|
register uint16_t temp;
|
|
#define PIX_SORT(a,b) { if ((a)>(b)) PIX_SWAP((a),(b)); }
|
|
#define PIX_SWAP(a,b) { temp=(a);(a)=(b);(b)=temp; }
|
|
uint16_t p[9];
|
|
for(i = 0; i < 9; ++i, addr += NUMBER_OF_ADC_CHANNELS) // first we should prepare array for optmed
|
|
p[i] = ADC_array[addr];
|
|
PIX_SORT(p[1], p[2]) ; PIX_SORT(p[4], p[5]) ; PIX_SORT(p[7], p[8]) ;
|
|
PIX_SORT(p[0], p[1]) ; PIX_SORT(p[3], p[4]) ; PIX_SORT(p[6], p[7]) ;
|
|
PIX_SORT(p[1], p[2]) ; PIX_SORT(p[4], p[5]) ; PIX_SORT(p[7], p[8]) ;
|
|
PIX_SORT(p[0], p[3]) ; PIX_SORT(p[5], p[8]) ; PIX_SORT(p[4], p[7]) ;
|
|
PIX_SORT(p[3], p[6]) ; PIX_SORT(p[1], p[4]) ; PIX_SORT(p[2], p[5]) ;
|
|
PIX_SORT(p[4], p[7]) ; PIX_SORT(p[4], p[2]) ; PIX_SORT(p[6], p[4]) ;
|
|
PIX_SORT(p[4], p[2]) ;
|
|
return p[4];
|
|
#undef PIX_SORT
|
|
#undef PIX_SWAP
|
|
}
|
|
|
|
// return MCU temperature (degrees of celsius * 10)
|
|
int32_t getMCUtemp(){
|
|
int32_t ADval = getADCval(TSENS_CHAN);
|
|
int32_t temperature = (int32_t) *TEMP30_CAL_ADDR - ADval;
|
|
temperature *= (int32_t)(1100 - 300);
|
|
temperature /= (int32_t)(*TEMP30_CAL_ADDR - *TEMP110_CAL_ADDR);
|
|
temperature += 300;
|
|
return(temperature);
|
|
}
|
|
|
|
// return Vdd * 100 (V)
|
|
uint32_t getVdd(){
|
|
uint32_t vdd = ((uint32_t) *VREFINT_CAL_ADDR) * (uint32_t)330; // 3.3V
|
|
vdd /= getADCval(VREF_CHAN);
|
|
return vdd;
|
|
}
|
|
|
|
static inline uint32_t Ufromadu(uint8_t nch, uint32_t vdd){
|
|
uint32_t ADU = getADCval(nch);
|
|
ADU *= vdd;
|
|
ADU >>= 12; // /4096
|
|
return ADU;
|
|
}
|
|
|
|
/**
|
|
* @brief getUval - calculate U12/U5
|
|
* @return array with members:
|
|
* 0 - V12 * 100V (U12 = 12Vin/4.93)
|
|
* 1 - V5 * 100V (U5 = 5Vin /2)
|
|
*/
|
|
uint16_t *getUval(){
|
|
static uint16_t Uval[4];
|
|
uint32_t vdd = getVdd();
|
|
uint32_t val = Ufromadu(0, vdd) * 493;
|
|
Uval[0] = (uint16_t)(val / 100);
|
|
Uval[1] = (uint16_t)(Ufromadu(1, vdd) << 1);
|
|
return Uval;
|
|
}
|