321 lines
11 KiB
C

/*
* Copyright 2024 Edward V. Emelianov <edward.emelianoff@gmail.com>.
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <stm32f1.h>
#include <string.h>
#include "ringbuffer.h"
#include "usb_descr.h"
#include "usb_dev.h"
// Class-Specific Control Requests
#define SEND_ENCAPSULATED_COMMAND 0x00 // unused
#define GET_ENCAPSULATED_RESPONSE 0x01 // unused
#define SET_COMM_FEATURE 0x02 // unused
#define GET_COMM_FEATURE 0x03 // unused
#define CLEAR_COMM_FEATURE 0x04 // unused
#define SET_LINE_CODING 0x20
#define GET_LINE_CODING 0x21
#define SET_CONTROL_LINE_STATE 0x22
#define SEND_BREAK 0x23
// control line states
#define CONTROL_DTR 0x01
#define CONTROL_RTS 0x02
#undef DBG
#define DBG(x)
#undef DBGs
#define DBGs(x)
// inbuf overflow when receiving
static volatile uint8_t bufovrfl[bTotNumEndpoints] = {0};
// receive buffer: hold data until chkin() call
static uint8_t volatile rcvbuf[bTotNumEndpoints][USB_RXBUFSZ];
static uint8_t volatile rcvbuflen[bTotNumEndpoints] = {0};
// line coding
#define DEFLC {115200, 0, 0, 8}
static usb_LineCoding lineCoding[bTotNumEndpoints] = {DEFLC, DEFLC, DEFLC};
// CDC configured and ready to use
volatile uint8_t CDCready[bTotNumEndpoints] = {0};
// ring buffers for incoming and outgoing data
static uint8_t obuf[bTotNumEndpoints][RBOUTSZ], ibuf[bTotNumEndpoints][RBINSZ];
#define OBUF(N) {.data = obuf[N], .length = RBOUTSZ, .head = 0, .tail = 0}
static volatile ringbuffer rbout[bTotNumEndpoints] = {OBUF(0), OBUF(1), OBUF(2)};
#define IBUF(N) {.data = ibuf[N], .length = RBINSZ, .head = 0, .tail = 0}
static volatile ringbuffer rbin[bTotNumEndpoints] = {IBUF(0), IBUF(1), IBUF(2)};
// last send data size (<0 if USB transfer ready)
static volatile int lastdsz[bTotNumEndpoints] = {-1, -1, -1};
static void chkin(uint8_t ifno){
if(bufovrfl[ifno]) return; // allow user to know that previous buffer was overflowed and cleared
if(!rcvbuflen[ifno]) return;
int w = RB_write((ringbuffer*)&rbin[ifno], (uint8_t*)rcvbuf[ifno], rcvbuflen[ifno]);
if(w < 0){
DBG("Can't write into buffer");
return;
}
if(w != rcvbuflen[ifno]) bufovrfl[ifno] = 1;
DBG("Put data into buffer");
rcvbuflen[ifno] = 0;
uint16_t status = KEEP_DTOG(USB->EPnR[1+ifno]); // don't change DTOG
USB->EPnR[1+ifno] = (status & ~(USB_EPnR_STAT_TX|USB_EPnR_CTR_RX)) ^ USB_EPnR_STAT_RX; // prepare to get next data portion
}
// called from transmit EP to send next data portion or by user - when new transmission starts
static void send_next(uint8_t ifno){
uint8_t usbbuff[USB_TXBUFSZ];
int buflen = RB_read((ringbuffer*)&rbout[ifno], (uint8_t*)usbbuff, USB_TXBUFSZ);
if(!CDCready[ifno]){
lastdsz[ifno] = -1;
return;
}
if(buflen == 0){
if(lastdsz[ifno] == USB_TXBUFSZ){
EP_Write(1+ifno, NULL, 0); // send ZLP after 64 bits packet when nothing more to send
lastdsz[ifno] = 0;
}else lastdsz[ifno] = -1; // OK. User can start sending data
return;
}else if(buflen < 0){
DBG("Buff busy");
lastdsz[ifno] = -1;
return;
}
DBG("Got data in buf");
DBGs(uhex2str(buflen));
DBGs(uhex2str(ifno));
EP_Write(1+ifno, (uint8_t*)usbbuff, buflen);
lastdsz[ifno] = buflen;
}
// data IN/OUT handler
static void rxtx_handler(){
uint8_t ifno = (USB->ISTR & USB_ISTR_EPID) - 1;
DBG("rxtx_handler");
DBGs(uhex2str(ifno));
if(ifno > bTotNumEndpoints-1){
DBG("wront ifno");
return;
}
uint16_t epstatus = KEEP_DTOG(USB->EPnR[1+ifno]);
if(RX_FLAG(epstatus)){ // receive data
DBG("Got data");
if(rcvbuflen[ifno]){
bufovrfl[ifno] = 1; // lost last data
rcvbuflen[ifno] = 0;
DBG("OVERFULL");
}
rcvbuflen[ifno] = EP_Read(1+ifno, (uint8_t*)rcvbuf[ifno]);
DBGs(uhex2str(rcvbuflen[ifno]));
USB->EPnR[1+ifno] = epstatus & ~(USB_EPnR_CTR_RX | USB_EPnR_STAT_RX | USB_EPnR_STAT_TX); // keep RX in STALL state until read data
chkin(ifno); // try to write current data into RXbuf if it's not busy
}else{ // tx successfull
DBG("Tx OK");
USB->EPnR[1+ifno] = (epstatus & ~(USB_EPnR_CTR_TX | USB_EPnR_STAT_TX)) ^ USB_EPnR_STAT_RX;
send_next(ifno);
}
}
// weak handlers: change them somewhere else if you want to setup USART
// SET_LINE_CODING
void WEAK linecoding_handler(uint8_t ifno, usb_LineCoding *lc){
lineCoding[ifno] = *lc;
DBG("linecoding_handler");
DBGs(uhex2str(ifno));
}
// SET_CONTROL_LINE_STATE
void WEAK clstate_handler(uint8_t ifno, uint16_t val){
DBG("clstate_handler");
DBGs(uhex2str(ifno));
DBGs(uhex2str(val));
CDCready[ifno] = val; // CONTROL_DTR | CONTROL_RTS -> interface connected; 0 -> disconnected
lastdsz[ifno] = -1;
}
// SEND_BREAK
void WEAK break_handler(uint8_t ifno){
CDCready[ifno] = 0;
lastdsz[ifno] = -1;
DBG("break_handler()");
DBGs(uhex2str(ifno));
}
// USB is configured: setup endpoints
void set_configuration(){
DBG("set_configuration()");
for(int i = 0; i < bTotNumEndpoints; ++i){
IWDG->KR = IWDG_REFRESH;
int r = EP_Init(1+i, EP_TYPE_BULK, USB_TXBUFSZ, USB_RXBUFSZ, rxtx_handler);
if(r){
DBG("Can't init EP");
DBGs(uhex2str(i));
DBGs(uhex2str(r));
}
}
}
// PL2303 CLASS request
void usb_class_request(config_pack_t *req, uint8_t *data, uint16_t datalen){
uint8_t recipient = REQUEST_RECIPIENT(req->bmRequestType);
uint8_t dev2host = (req->bmRequestType & 0x80) ? 1 : 0;
uint8_t ifno = req->wIndex >> 1;
if(ifno > bTotNumEndpoints-1 && ifno != 0xff){
DBG("wront ifno");
return;
}
DBG("usb_class_request");
DBGs(uhex2str(req->bRequest));
switch(recipient){
case REQ_RECIPIENT_INTERFACE:
switch(req->bRequest){
case SET_LINE_CODING:
DBG("SET_LINE_CODING");
if(!data || !datalen) break; // wait for data
if(datalen == sizeof(usb_LineCoding))
linecoding_handler(ifno, (usb_LineCoding*)data);
break;
case GET_LINE_CODING:
DBG("GET_LINE_CODING");
EP_WriteIRQ(0, (uint8_t*)&lineCoding[ifno], sizeof(lineCoding));
break;
case SET_CONTROL_LINE_STATE:
DBG("SET_CONTROL_LINE_STATE");
clstate_handler(ifno, req->wValue);
break;
case SEND_BREAK:
DBG("SEND_BREAK");
break_handler(ifno);
break;
default:
DBG("Wrong");
DBGs(uhex2str(req->bRequest));
DBGs(uhex2str(datalen));
}
break;
default:
DBG("Wrong");
DBGs(uhex2str(recipient));
DBGs(uhex2str(datalen));
DBGs(uhex2str(req->bRequest));
if(dev2host) EP_WriteIRQ(0, NULL, 0);
}
if(!dev2host) EP_WriteIRQ(0, NULL, 0);
}
// blocking send full content of ring buffer
int USB_sendall(uint8_t ifno){
while(lastdsz[ifno] > 0){
if(!CDCready[ifno]) return FALSE;
IWDG->KR = IWDG_REFRESH;
}
return TRUE;
}
// put `buf` into queue to send
int USB_send(uint8_t ifno, const uint8_t *buf, int len){
if(!buf || !CDCready[ifno] || !len) return FALSE;
DBG("USB_send");
while(len){
if(!CDCready[ifno]) return FALSE;
IWDG->KR = IWDG_REFRESH;
int a = RB_write((ringbuffer*)&rbout[ifno], buf, len);
if(a > 0){
len -= a;
buf += a;
}else if(a == 0){ // overfull
if(lastdsz[ifno] < 0) send_next(ifno);
}
}
if(buf[len-1] == '\n' && lastdsz[ifno] < 0) send_next(ifno);
return TRUE;
}
int USB_putbyte(uint8_t ifno, uint8_t byte){
if(!CDCready[ifno]) return FALSE;
int l = 0;
while((l = RB_write((ringbuffer*)&rbout[ifno], &byte, 1)) != 1){
if(!CDCready[ifno]) return FALSE;
IWDG->KR = IWDG_REFRESH;
if(l == 0){ // overfull
if(lastdsz[ifno] < 0) send_next(ifno);
continue;
}
}
// send line if got EOL
if(byte == '\n' && lastdsz[ifno] < 0) send_next(ifno);
return TRUE;
}
int USB_sendstr(uint8_t ifno, const char *string){
if(!string || !CDCready[ifno]) return FALSE;
int len = strlen(string);
if(!len) return FALSE;
return USB_send(ifno, (const uint8_t*)string, len);
}
/**
* @brief USB_receive - get binary data from receiving ring-buffer
* @param buf (i) - buffer for received data
* @param len - length of `buf`
* @return amount of received bytes (negative, if overfull happened)
*/
int USB_receive(uint8_t ifno, uint8_t *buf, int len){
chkin(ifno);
if(bufovrfl[ifno]){
DBG("Buffer overflow");
DBGs(uhex2str(ifno));
while(1 != RB_clearbuf((ringbuffer*)&rbin[ifno]));
bufovrfl[ifno] = 0;
return -1;
}
int sz = RB_read((ringbuffer*)&rbin[ifno], buf, len);
if(sz < 0) return 0; // buffer in writting state
DBG("usb read");
return sz;
}
/**
* @brief USB_receivestr - get string up to '\n' and replace '\n' with 0
* @param buf - receiving buffer
* @param len - its length
* @return strlen or negative value indicating overflow (if so, string won't be ends with 0 and buffer should be cleared)
*/
int USB_receivestr(uint8_t ifno, char *buf, int len){
chkin(ifno);
if(bufovrfl[ifno]){
while(1 != RB_clearbuf((ringbuffer*)&rbin[ifno]));
bufovrfl[ifno] = 0;
return -1;
}
int l = RB_readto((ringbuffer*)&rbin[ifno], '\n', (uint8_t*)buf, len);
if(l < 1){
if(rbin[ifno].length == RB_datalen((ringbuffer*)&rbin[ifno])){ // buffer is full but no '\n' found
while(1 != RB_clearbuf((ringbuffer*)&rbin[ifno]));
return -1;
}
return 0;
}
if(l == 0) return 0;
buf[l-1] = 0; // replace '\n' with strend
return l;
}