2025-10-06 23:27:30 +03:00

167 lines
6.3 KiB
C

/*
* This file is part of the ir-allsky project.
* Copyright 2025 Edward V. Emelianov <edward.emelianoff@gmail.com>.
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "BMP280.h"
#include "hardware.h"
#include "mlxproc.h"
#include "mlx90640.h"
static bme280_t environment; // current measurements
#ifndef EBUG
TRUE_INLINE void iwdg_setup(){
uint32_t tmout = 16000000;
/* Enable the peripheral clock RTC */
/* (1) Enable the LSI (40kHz) */
/* (2) Wait while it is not ready */
RCC->CSR |= RCC_CSR_LSION; /* (1) */
while((RCC->CSR & RCC_CSR_LSIRDY) != RCC_CSR_LSIRDY){if(--tmout == 0) break;} /* (2) */
/* Configure IWDG */
/* (1) Activate IWDG (not needed if done in option bytes) */
/* (2) Enable write access to IWDG registers */
/* (3) Set prescaler by 64 (1.6ms for each tick) */
/* (4) Set reload value to have a rollover each 2s */
/* (5) Check if flags are reset */
/* (6) Refresh counter */
IWDG->KR = IWDG_START; /* (1) */
IWDG->KR = IWDG_WRITE_ACCESS; /* (2) */
IWDG->PR = IWDG_PR_PR_1; /* (3) */
IWDG->RLR = 1250; /* (4) */
tmout = 16000000;
while(IWDG->SR){if(--tmout == 0) break;} /* (5) */
IWDG->KR = IWDG_REFRESH; /* (6) */
}
#endif
TRUE_INLINE void gpio_setup(){
RCC->AHBENR |= RCC_AHBENR_GPIOAEN | RCC_AHBENR_GPIOBEN; // for USART and LEDs
for(int i = 0; i < 10000; ++i) nop();
// USB - alternate function 14 @ pins PA11/PA12; SWD - AF0 @PA13/14; USB pullup - PA15
// PA6 - PWM for external heater (TIM3_CH1 or TIM16_CH1); PA7 - PWM propto (humidity - 50%)
GPIOA->AFR[0] = AFRf(2, 6) | AFRf(2, 7);
GPIOA->AFR[1] = AFRf(14, 11) | AFRf(14, 12);
GPIOA->MODER = MODER_AI(0) | MODER_AI(1) | MODER_AI(4) | MODER_AI(5) | MODER_AF(6) |
MODER_AF(7) | MODER_AF(11) | MODER_AF(12) | MODER_AF(13) | MODER_AF(14) | MODER_O(15);
// PB0 - PWM propto Text (<=20 - 0%, >=30 - 100%), PB1 - PWM propto (Text-Tsky) (<=-5 - 0%, >=+35 - 100%) PB2 - SPI_CS
GPIOB->AFR[0] = AFRf(2, 0) | AFRf(2, 1);
GPIOB->MODER = MODER_AF(0) | MODER_AF(1) | MODER_O(2);
pin_set(GPIOB, 1<<1);
SPI_CS_1();
}
// setup PWM (TIM3_CH1) for external heater management over optocoupler (active level - 0)
TRUE_INLINE void pwm_setup(){
RCC->APB1ENR |= RCC_APB1ENR_TIM3EN;
TIM3->CR1 = TIM_CR1_ARPE;
TIM3->PSC = 71; // 72M/72 = 1MHz; PWMfreq=1M/100=10kHz
// PWM mode 1 (active -> inactive), enable buffering
TIM3->CCMR1 = TIM_CCMR1_OC1M_2 | TIM_CCMR1_OC1M_1 | TIM_CCMR1_OC1PE |
TIM_CCMR1_OC2M_2 | TIM_CCMR1_OC2M_1 | TIM_CCMR1_OC2PE;
TIM3->CCMR2 = TIM_CCMR2_OC3M_2 | TIM_CCMR2_OC3M_1 | TIM_CCMR2_OC3PE |
TIM_CCMR2_OC4M_2 | TIM_CCMR2_OC4M_1 | TIM_CCMR2_OC4PE;
TIM3->CCR1 = 0; TIM3->CCR2 = 0; TIM3->CCR3 = 0; TIM3->CCR4 = 0;
TIM3->ARR = PWM_CCR_MAX-1; // 8bit PWM from 0 to 99
TIM3->BDTR |= TIM_BDTR_MOE; // enable main output
// enable PWM output, all outputs active - low
TIM3->CCER = TIM_CCER_CC1P | TIM_CCER_CC1E | TIM_CCER_CC2P | TIM_CCER_CC2E |
TIM_CCER_CC3P | TIM_CCER_CC3E | TIM_CCER_CC4P | TIM_CCER_CC4E;
TIM3->CR1 |= TIM_CR1_CEN; // run timer
}
// change PWM value in percents; return 0 if `val` is bad or `ch` not 0..3
int setPWM(uint8_t ch, uint8_t val){
if(ch > 3 || val > PWM_CCR_MAX) return 0;
volatile uint32_t *CCRs = &(TIM3->CCR1);
CCRs[ch] = val;
return 1;
}
void hw_setup(){
gpio_setup();
pwm_setup();
#ifndef EBUG
iwdg_setup();
#endif
}
int bme_init(){
BMP280_setup();
if(!BMP280_init()) return 0;
if(!BMP280_start()) return 0;
return 1;
}
// calculate mean sky temperature
static float Tsky(){
int nmeas = 0;
float Tacc = 0.f;
for(int n = 0; n < N_SENSORS; ++n){ // sum all sensors
float *im = mlx_getimage(n);
if(!im) continue;
for(int i = 0; i < MLX_PIXNO; ++i){
Tacc += im[i]; ++nmeas;
}
}
if(nmeas < MLX_PIXNO) return +1000.; // all very bad: no sensors found?
return (Tacc / (float)nmeas);
}
// process sensor and make measurements
void bme_process(){
static uint32_t Tmeas = 0;
BMP280_status s = BMP280_get_status();
if(s != BMP280_NOTINIT){
if(s == BMP280_ERR) BMP280_init();
else{
BMP280_process();
s = BMP280_get_status(); // refresh status after processing
float Temperature, Pressure, Humidity;
if(s == BMP280_RDY && BMP280_getdata(&Temperature, &Pressure, &Humidity)){
environment.Tdew = Tdew(Temperature, Humidity);
environment.T = Temperature;
environment.P = Pressure;
environment.H = Humidity;
// set PWM duty propto humidity
float h = (Humidity - 50.f) * 2.f;
if(h < 0.f) h = 0.f; else if(h > 100.f) h = 100.f;
setPWM(PWM_CH_HUMIDITY, (uint8_t)h);
environment.Tmeas = Tms;
// set PWM duty propto external T
float t = (Temperature + 20.f) * 2.f;
if(t < 0.f) t = 0.f; else if(t > 100.f) t = 100.f;
setPWM(PWM_CH_TEXT, (uint8_t)t);
// set PWM propto skyqual
environment.Tsky = Tsky();
float q = (35.f - Temperature + environment.Tsky) * 2.5f;
if(q < 0.f) q = 0.f; else if(q > 100.f) q = 100.f;
setPWM(PWM_CH_TSKY, (uint8_t)q);
}
if(Tms - Tmeas > ENV_MEAS_PERIOD-1){
if(BMP280_start()) Tmeas = Tms;
}
}
}
}
int get_environment(bme280_t *env){
if(!env) return 0;
*env = environment;
if(Tms - environment.Tmeas > 2*ENV_MEAS_PERIOD) return 0; // data may be wrong
return 1; // good data
}