179 lines
6.4 KiB
C

/*
* This file is part of the Chiller project.
* Copyright 2018 Edward V. Emelianov <edward.emelianoff@gmail.com>.
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "adc.h"
/**
* @brief ADCx_array - arrays for ADC channels with median filtering:
* ADC1:
* 0 - Rvar - ADC1_IN1
* 1 - Rvar/2 - ADC1_IN2
* 2 - internal Tsens - ADC1_IN16
* 3 - Vref - ADC1_IN18
* ADC2:
* 4 - AIN5/DAC_OUT1 - PA4 - DAC1_OUT1, PA5 - ADC2_IN2
*/
static uint16_t ADC_array[NUMBER_OF_ADC_CHANNELS*9];
TRUE_INLINE void calADC(ADC_TypeDef *chnl){
// calibration
// enable voltage regulator
chnl->CR = 0;
chnl->CR = ADC_CR_ADVREGEN_0;
// wait for 10us
uint16_t ctr = 0;
while(++ctr < 1000){nop();}
// ADCALDIF=0 (single channels)
if((chnl->CR & ADC_CR_ADEN)){
chnl->CR |= ADC_CR_ADSTP;
chnl->CR |= ADC_CR_ADDIS;
}
chnl->CR |= ADC_CR_ADCAL;
while((chnl->CR & ADC_CR_ADCAL) != 0 && ++ctr < 0xfff0){};
chnl->CR = ADC_CR_ADVREGEN_0;
// enable ADC
ctr = 0;
do{
chnl->CR |= ADC_CR_ADEN;
}while((chnl->ISR & ADC_ISR_ADRDY) == 0 && ++ctr < 0xfff0);
}
TRUE_INLINE void enADC(ADC_TypeDef *chnl){
// ADEN->1, wait ADRDY
chnl->CR |= ADC_CR_ADEN;
uint16_t ctr = 0;
while(!(chnl->ISR & ADC_ISR_ADRDY) && ++ctr < 0xffff){}
chnl->CR |= ADC_CR_ADSTART; /* start the ADC conversions */
}
/**
* ADC1 - DMA1_ch1
* ADC2 - DMA2_ch1
*/
// Setup ADC and DAC
void adc_setup(){
RCC->AHBENR |= RCC_AHBENR_ADC12EN; // Enable clocking
ADC12_COMMON->CCR = ADC_CCR_TSEN | ADC_CCR_VREFEN | ADC_CCR_CKMODE; // enable Tsens and Vref, HCLK/4
calADC(ADC1);
calADC(ADC2);
// ADC1: channels 1,2,16,18; ADC2: channel 2
ADC1->SMPR1 = ADC_SMPR1_SMP0 | ADC_SMPR1_SMP1;
ADC1->SMPR2 = ADC_SMPR2_SMP15 | ADC_SMPR2_SMP17;
// 4 conversions in group: 1->2->16->18
ADC1->SQR1 = (1<<6) | (2<<12) | (16<<18) | (18<<24) | (4-1);
ADC2->SMPR1 = ADC_SMPR1_SMP1;
ADC2->SQR1 = (2<<6) | (1-1);
// configure DMA for ADC
RCC->AHBENR |= RCC_AHBENR_DMA1EN | RCC_AHBENR_DMA2EN;
ADC1->CFGR = ADC_CFGR_CONT | ADC_CFGR_DMAEN | ADC_CFGR_DMACFG;
ADC2->CFGR = ADC_CFGR_CONT | ADC_CFGR_DMAEN | ADC_CFGR_DMACFG;
DMA1_Channel1->CPAR = (uint32_t) (&(ADC1->DR));
DMA1_Channel1->CMAR = (uint32_t)(ADC_array);
DMA1_Channel1->CNDTR = NUMBER_OF_ADC1_CHANNELS * 9;
DMA1_Channel1->CCR |= DMA_CCR_MINC | DMA_CCR_MSIZE_0 | DMA_CCR_PSIZE_0 | DMA_CCR_CIRC;
DMA1_Channel1->CCR |= DMA_CCR_EN;
DMA2_Channel1->CPAR = (uint32_t) (&(ADC2->DR));
DMA2_Channel1->CMAR = (uint32_t)(&ADC_array[ADC2START]);
DMA2_Channel1->CNDTR = NUMBER_OF_ADC2_CHANNELS * 9;
DMA2_Channel1->CCR |= DMA_CCR_MINC | DMA_CCR_MSIZE_0 | DMA_CCR_PSIZE_0 | DMA_CCR_CIRC;
DMA2_Channel1->CCR |= DMA_CCR_EN;
enADC(ADC1);
enADC(ADC2);
// configure DAC to generate a triangle wave on DAC1_OUT synchronized by TIM6 HW trigger
/* (1) Enable the peripheral clock of the DAC */
/* (2) Configure WAVEx at 10,
Configure mask amplitude for ch1 (MAMP1) at 1011 for a 4095-bits amplitude
enable the DAC ch1, disable buffer on ch1,
and select TIM6 as trigger by keeping 000 in TSEL1 */
RCC->APB1ENR |= RCC_APB1ENR_DAC1EN; /* (1) */
// DAC simple throw out constant value: output buffer disable, DAC ch1 enable
DAC->CR = DAC_CR_BOFF1 | DAC_CR_EN1;
// starting value: 1v
DAC1->DHR12R1 = 1241;
#if 0
DAC->CR |= DAC_CR_WAVE1_1
| DAC_CR_MAMP1_3 | DAC_CR_MAMP1_1 | DAC_CR_MAMP1_0
| DAC_CR_BOFF1 | DAC_CR_TEN1 | DAC_CR_EN1; /* (2) */
// configure the Timer 6 to generate an external trigger on TRGO each microsecond
/* (1) Enable the peripheral clock of the TIM6 */
/* (2) Configure MMS=010 to output a rising edge at each update event */
/* (3) Select PCLK/2 i.e. 48MHz/2=24MHz */
/* (4) Set one update event each 1 microsecond */
/* (5) Enable TIM6 */
RCC->APB1ENR |= RCC_APB1ENR_TIM6EN; /* (1) */
TIM6->CR2 |= TIM_CR2_MMS_1; /* (2) */
TIM6->PSC = 1; /* (3) */
TIM6->ARR = (uint16_t)24; /* (4) */
TIM6->CR1 |= TIM_CR1_CEN; /* (5) */
#endif
}
/**
* @brief getADCval - calculate median value for `nch` channel
* @param nch - number of channel
* @return
*/
uint16_t getADCval(int nch){
register uint16_t temp;
#define PIX_SORT(a,b) { if ((a)>(b)) PIX_SWAP((a),(b)); }
#define PIX_SWAP(a,b) { temp=(a);(a)=(b);(b)=temp; }
uint16_t p[9];
int adval = (nch >= NUMBER_OF_ADC1_CHANNELS) ? NUMBER_OF_ADC2_CHANNELS : NUMBER_OF_ADC1_CHANNELS;
int addr = (nch >= NUMBER_OF_ADC1_CHANNELS) ? nch - NUMBER_OF_ADC2_CHANNELS + ADC2START: nch;
for(int i = 0; i < 9; ++i, addr += adval) // first we should prepare array for optmed
p[i] = ADC_array[addr];
PIX_SORT(p[1], p[2]) ; PIX_SORT(p[4], p[5]) ; PIX_SORT(p[7], p[8]) ;
PIX_SORT(p[0], p[1]) ; PIX_SORT(p[3], p[4]) ; PIX_SORT(p[6], p[7]) ;
PIX_SORT(p[1], p[2]) ; PIX_SORT(p[4], p[5]) ; PIX_SORT(p[7], p[8]) ;
PIX_SORT(p[0], p[3]) ; PIX_SORT(p[5], p[8]) ; PIX_SORT(p[4], p[7]) ;
PIX_SORT(p[3], p[6]) ; PIX_SORT(p[1], p[4]) ; PIX_SORT(p[2], p[5]) ;
PIX_SORT(p[4], p[7]) ; PIX_SORT(p[4], p[2]) ; PIX_SORT(p[6], p[4]) ;
PIX_SORT(p[4], p[2]) ;
return p[4];
#undef PIX_SORT
#undef PIX_SWAP
}
// get voltage @input nch (V)
float getADCvoltage(int nch){
float v = getADCval(nch);
v *= getVdd();
v /= 4096.f; // 12bit ADC
return v;
}
// return MCU temperature (degrees of celsius)
float getMCUtemp(){
// make correction on Vdd value
int32_t ADval = getADCval(ADC_TS);
float temperature = (float) *TEMP30_CAL_ADDR - ADval;
temperature *= (110.f - 30.f);
temperature /= (float)(*TEMP30_CAL_ADDR - *TEMP110_CAL_ADDR);
temperature += 30.f;
return(temperature);
}
// return Vdd (V)
float getVdd(){
float vdd = ((float) *VREFINT_CAL_ADDR) * 3.3f; // 3.3V
vdd /= getADCval(ADC_VREF);
return vdd;
}