Edward Emelianov c7f6718d2e SPI works
2025-10-04 00:23:18 +03:00

429 lines
14 KiB
C

/**
* Ciastkolog.pl (https://github.com/ciastkolog)
*
*/
/**
* The MIT License (MIT)
*
* Copyright (c) 2016 sheinz (https://github.com/sheinz)
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
/*
* Copyright 2023 Edward V. Emelianov <edward.emelianoff@gmail.com>.
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "hardware.h"
#include "i2c.h"
#include "spi.h"
#include "BMP280.h"
#include "usb_dev.h" // DBG
#ifdef EBUG
#include "strfunc.h"
extern volatile uint32_t Tms;
#endif
#include <string.h>
#include <math.h>
#define BMP280_I2C_ADDRESS_MASK (0x76)
#define BMP280_I2C_ADDRESS_0 (0x76)
#define BMP280_I2C_ADDRESS_1 (0x77)
/**
* BMP280 registers
*/
#define BMP280_REG_HUM_LSB 0xFE
#define BMP280_REG_HUM_MSB 0xFD
#define BMP280_REG_HUM (BMP280_REG_HUM_MSB)
#define BMP280_REG_TEMP_XLSB 0xFC /* bits: 7-4 */
#define BMP280_REG_TEMP_LSB 0xFB
#define BMP280_REG_TEMP_MSB 0xFA
#define BMP280_REG_TEMP (BMP280_REG_TEMP_MSB)
#define BMP280_REG_PRESS_XLSB 0xF9 /* bits: 7-4 */
#define BMP280_REG_PRESS_LSB 0xF8
#define BMP280_REG_PRESS_MSB 0xF7
#define BMP280_REG_PRESSURE (BMP280_REG_PRESS_MSB)
#define BMP280_REG_ALLDATA (BMP280_REG_PRESS_MSB) // all data: P, T & H
#define BMP280_REG_CONFIG 0xF5 /* bits: 7-5 t_sb; 4-2 filter; 0 spi3w_en */
#define BMP280_REG_CTRL 0xF4 /* bits: 7-5 osrs_t; 4-2 osrs_p; 1-0 mode */
#define BMP280_REG_STATUS 0xF3 /* bits: 3 measuring; 0 im_update */
#define BMP280_REG_CTRL_HUM 0xF2 /* bits: 2-0 osrs_h; */
#define BMP280_REG_RESET 0xE0
#define BMP280_RESET_VALUE 0xB6
#define BMP280_REG_ID 0xD0
#define BMP280_REG_CALIBA 0x88
#define BMP280_CALIBA_SIZE (26) // 26 bytes of calibration registers sequence from 0x88 to 0xa1
#define BMP280_CALIBB_SIZE (7) // 7 bytes of calibration registers sequence from 0xe1 to 0xe7
#define BMP280_REG_CALIBB 0xE1
#define BMP280_MODE_FORSED (1) // force single measurement
#define BMP280_MODE_NORMAL (3) // run continuosly
#define BMP280_STATUS_IMCOPY (1<<0) // im-copy (sensor busy)
#define BME280_STATUS_MSRGOOD (1<<2) // measurement is good (undocumented bit)
#define BMP280_STATUS_MSRNG (1<<3) // measuring in process
static uint8_t curaddress = BMP280_I2C_ADDRESS_0<<1;
// function to read N registers or only one
static uint8_t* (*read_regs)(uint8_t addr, uint8_t reg, uint8_t nbytes) = NULL;
// write data to register
static uint8_t (*write_data)(uint8_t addr, uint8_t *data, uint8_t nbytes) = NULL;
static int read_reg(uint8_t reg, uint8_t *val){
uint8_t *got = read_regs(curaddress, reg, 1);
if(!got) return 0;
if(val) *val = *got;
return 1;
}
static int write_reg(uint8_t reg, uint8_t val){
uint8_t d[2];
d[0] = reg; d[1] = val;
if(!write_data(curaddress, d, 2)) return 0;
return 1;
}
static struct {
// temperature
uint16_t dig_T1; // 0x88 (LSB), 0x98 (MSB)
int16_t dig_T2; // ...
int16_t dig_T3;
// pressure
uint16_t dig_P1;
int16_t dig_P2;
int16_t dig_P3;
int16_t dig_P4;
int16_t dig_P5;
int16_t dig_P6;
int16_t dig_P7;
int16_t dig_P8;
int16_t dig_P9; // 0x9e, 0x9f
// humidity (partially calculated from EEE struct)
uint8_t unused; // 0xA0
uint8_t dig_H1; // 0xA1
int16_t dig_H2; // --------------------
uint8_t dig_H3; // only from EEE
uint16_t dig_H4;
uint16_t dig_H5;
int8_t dig_H6;
// data is ready
uint8_t rdy;
} __attribute__ ((packed)) CaliData = {0};
//T: 28222 26310 50
//P: 37780 -10748 3024 7965 -43 -7 9900 -10230 4285
//H: 75 25601 0 334 50 30
static struct{
BMP280_Filter filter; // filtering
BMP280_Oversampling p_os; // oversampling for pressure
BMP280_Oversampling t_os; // -//- temperature
BMP280_Oversampling h_os; // -//- humidity
uint8_t ID; // identificator
uint8_t regctl; // control register base value [(params.t_os << 5) | (params.p_os << 2)]
} params = {
.filter = BMP280_FILTER_OFF,
.p_os = BMP280_OVERS16,
.t_os = BMP280_OVERS16,
.h_os = BMP280_OVERS16,
.ID = 0
};
static BMP280_status bmpstatus = BMP280_NOTINIT;
BMP280_status BMP280_get_status(){
return bmpstatus;
}
#define SPI_BUFSIZE (256)
static uint8_t SPIbuf[SPI_BUFSIZE];
// these functions for
static uint8_t *spi_readregs(uint8_t _U_ address, uint8_t reg, uint8_t len){
if(len > SPI_BUFSIZE-2) return NULL;
SPI_CS_0();
bzero(SPIbuf, sizeof(SPIbuf));
SPIbuf[0] = reg | 0x80;
int r = spi_writeread(SPIbuf, len+1);
SPI_CS_1();
if(!r) return NULL;
#ifdef EBUG
USB_sendstr("Register "); USB_sendstr(uhex2str(reg)); USB_sendstr(": ");
hexdump(USB_sendstr, SPIbuf + 1, len);
#endif
return SPIbuf + 1;
}
static uint8_t spi_write(uint8_t _U_ address, uint8_t *data, uint8_t n){
SPI_CS_0();
memcpy(SPIbuf, data, n);
SPIbuf[0] &= 0x7F; // clear MSbit
uint8_t r = spi_writeread(SPIbuf, n);
SPI_CS_1();
return r;
}
// address: 0 or 1
void BMP280_setup(uint8_t address, uint8_t isI2C){
bmpstatus = BMP280_NOTINIT;
if(isI2C){
curaddress = (BMP280_I2C_ADDRESS_MASK | (address & 1))<<1;
read_regs = i2c_read_regs;
write_data = i2c_write;
i2c_setup(I2C_SPEED_400K);
}else{
curaddress = BMP280_I2C_ADDRESS_MASK | (address & 1);
read_regs = spi_readregs;
write_data = spi_write;
spi_setup();
}
}
// setters for `params`
void BMP280_setfilter(BMP280_Filter f){
params.filter = f;
}
BMP280_Filter BMP280_getfilter(){
return params.filter;
}
void BMP280_setOSt(BMP280_Oversampling os){
params.t_os = os;
}
void BMP280_setOSp(BMP280_Oversampling os){
params.p_os = os;
}
void BMP280_setOSh(BMP280_Oversampling os){
params.h_os = os;
}
// get compensation data, return 1 if OK
static int readcompdata(){
uint8_t *got = read_regs(curaddress, BMP280_REG_CALIBA, BMP280_CALIBA_SIZE);
if(!got) return 0;
memcpy(&CaliData, got, BMP280_CALIBA_SIZE);
CaliData.rdy = 1;
if(params.ID == BME280_CHIP_ID){
got = read_regs(curaddress, BMP280_REG_CALIBB, BMP280_CALIBB_SIZE);
if(got){
CaliData.dig_H2 = (got[1] << 8) | got[0];
CaliData.dig_H3 = got[2];
CaliData.dig_H4 = (got[3] << 4) | (got[4] & 0x0f);
CaliData.dig_H5 = (got[5] << 4) | (got[4] >> 4);
CaliData.dig_H6 = got[6];
}
}
return 1;
}
// read compensation data & write registers
int BMP280_init(){
IWDG->KR = IWDG_REFRESH;
DBG("INI:");
if(!read_reg(BMP280_REG_ID, &params.ID)){
DBG("Can't get ID");
return 0;
}
if(params.ID != BMP280_CHIP_ID && params.ID != BME280_CHIP_ID){
DBG("Not BMP/BME");
return 0;
}
if(!write_reg(BMP280_REG_RESET, BMP280_RESET_VALUE)){
DBG("Can't reset");
return 0;
}
uint8_t reg = 1;
int ntries = 100;
while((reg & BMP280_STATUS_IMCOPY) && --ntries){
IWDG->KR = IWDG_REFRESH;
if(!read_reg(BMP280_REG_STATUS, &reg)){
DBG("can't get status");
return 0;
}
}
if(ntries < 0){
DBG("Timeout getting status");
return 0;
}
if(!readcompdata()){
DBG("Can't read calibration data");
return 0;
}
// write filter configuration
reg = params.filter << 2;
if(!write_reg(BMP280_REG_CONFIG, reg)){DBG("Can't save filter settings");}
reg = (params.t_os << 5) | (params.p_os << 2); // oversampling for P/T, sleep mode
if(!write_reg(BMP280_REG_CTRL, reg)){
DBG("Can't write settings for P/T");
return 0;
}
params.regctl = reg;
if(params.ID == BME280_CHIP_ID){ // write CTRL_HUM only AFTER CTRL!
reg = params.h_os;
if(!write_reg(BMP280_REG_CTRL_HUM, reg)){
DBG("Can't write settings for H");
return 0;
}
}
bmpstatus = BMP280_RELAX;
return 1;
}
// @return 1 if OK, *devid -> BMP/BME
int BMP280_read_ID(uint8_t *devid){
if(params.ID != BMP280_CHIP_ID && params.ID != BME280_CHIP_ID) return 0;
*devid = params.ID;
return 1;
}
// start measurement, @return 1 if all OK
int BMP280_start(){
if(!CaliData.rdy || bmpstatus == BMP280_BUSY){
#ifdef EBUG
USB_sendstr("rdy="); USB_sendstr(u2str(CaliData.rdy));
USB_sendstr("\nbmpstatus="); USB_sendstr(u2str(bmpstatus));
newline();
#endif
return 0;
}
uint8_t reg = params.regctl | BMP280_MODE_FORSED;
if(!write_reg(BMP280_REG_CTRL, reg)){
DBG("Can't write CTRL reg");
return 0;
}
bmpstatus = BMP280_BUSY;
return 1;
}
void BMP280_process(){
if(bmpstatus == BMP280_NOTINIT){
BMP280_init(); return;
}
if(bmpstatus != BMP280_BUSY) return;
// BUSY state: poll data ready
uint8_t reg;
if(!read_reg(BMP280_REG_STATUS, &reg)) return;
if(reg & (BMP280_STATUS_MSRNG | BMP280_STATUS_IMCOPY)) return; // still busy
/* if(params.ID == BME280_CHIP_ID && !(reg & BME280_STATUS_MSRGOOD)){ // check if data is good
DBG("Wrong data!");
bmpstatus = BMP280_RELAX;
read_regs(curaddress, BMP280_REG_ALLDATA, 8);
return;
}*/
bmpstatus = BMP280_RDY; // data ready
}
// return T*100 degC
static inline int32_t compTemp(int32_t adc_temp, int32_t *t_fine){
int32_t var1, var2;
var1 = ((((adc_temp >> 3) - ((int32_t) CaliData.dig_T1 << 1)))
* (int32_t) CaliData.dig_T2) >> 11;
var2 = (((((adc_temp >> 4) - (int32_t) CaliData.dig_T1)
* ((adc_temp >> 4) - (int32_t) CaliData.dig_T1)) >> 12)
* (int32_t) CaliData.dig_T3) >> 14;
*t_fine = var1 + var2;
return (*t_fine * 5 + 128) >> 8;
}
// return p*256 hPa
static inline uint32_t compPres(int32_t adc_press, int32_t fine_temp) {
int64_t var1, var2, p;
var1 = (int64_t) fine_temp - 128000;
var2 = var1 * var1 * (int64_t) CaliData.dig_P6;
var2 = var2 + ((var1 * (int64_t) CaliData.dig_P5) << 17);
var2 = var2 + (((int64_t) CaliData.dig_P4) << 35);
var1 = ((var1 * var1 * (int64_t) CaliData.dig_P3) >> 8)
+ ((var1 * (int64_t) CaliData.dig_P2) << 12);
var1 = (((int64_t) 1 << 47) + var1) * ((int64_t) CaliData.dig_P1) >> 33;
if (var1 == 0){
return 0; // avoid exception caused by division by zero
}
p = 1048576 - adc_press;
p = (((p << 31) - var2) * 3125) / var1;
var1 = ((int64_t) CaliData.dig_P9 * (p >> 13) * (p >> 13)) >> 25;
var2 = ((int64_t) CaliData.dig_P8 * p) >> 19;
p = ((p + var1 + var2) >> 8) + ((int64_t) CaliData.dig_P7 << 4);
return p;
}
// return H*1024 %
static inline uint32_t compHum(int32_t adc_hum, int32_t fine_temp){
int32_t v_x1_u32r;
v_x1_u32r = fine_temp - (int32_t) 76800;
v_x1_u32r = ((((adc_hum << 14) - (((int32_t)CaliData.dig_H4) << 20)
- (((int32_t)CaliData.dig_H5) * v_x1_u32r)) + (int32_t)16384) >> 15)
* (((((((v_x1_u32r * ((int32_t)CaliData.dig_H6)) >> 10)
* (((v_x1_u32r * ((int32_t)CaliData.dig_H3)) >> 11)
+ (int32_t)32768)) >> 10) + (int32_t)2097152)
* ((int32_t)CaliData.dig_H2) + 8192) >> 14);
v_x1_u32r = v_x1_u32r
- (((((v_x1_u32r >> 15) * (v_x1_u32r >> 15)) >> 7)
* ((int32_t)CaliData.dig_H1)) >> 4);
v_x1_u32r = v_x1_u32r < 0 ? 0 : v_x1_u32r;
v_x1_u32r = v_x1_u32r > 419430400 ? 419430400 : v_x1_u32r;
return v_x1_u32r >> 12;
}
// read data & convert it
int BMP280_getdata(float *T, float *P, float *H){
if(bmpstatus != BMP280_RDY) return 0;
bmpstatus = BMP280_RELAX;
uint8_t datasz = 8; // amount of bytes to read
if(params.ID != BME280_CHIP_ID){
if(H) *H = 0;
H = NULL;
datasz = 6;
}
uint8_t *data = read_regs(curaddress, BMP280_REG_ALLDATA, datasz);
if(!data) return 0;
int32_t p = (data[0] << 12) | (data[1] << 4) | (data[2] >> 4);
int32_t t = (data[3] << 12) | (data[4] << 4) | (data[5] >> 4);
int32_t t_fine;
if(T){
int32_t Temp = compTemp(t, &t_fine);
*T = ((float)Temp)/100.f;
}
if(P) *P = ((float)compPres(p, t_fine)) / 256.f;
if(H){
int32_t h = (data[6] << 8) | data[7];
*H = ((float)compHum(h, t_fine))/1024.;
}
return 1;
}
// dewpoint calculation (T in degrC, H in percents)
float Tdew(float T, float H){
if(H < 1e-3) return -300.f;
float gamma = 17.27f * T / (237.7f + T) + logf(H/100.f);
if(fabsf(17.27f - gamma) < 1e-3) return -300.f;
return (237.7f * gamma)/(17.27f - gamma);
}