2025-09-11 20:13:53 +03:00

449 lines
18 KiB
C
Raw Blame History

/*
* This file is part of the mlxtest project.
* Copyright 2022 Edward V. Emelianov <edward.emelianoff@gmail.com>.
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <math.h>
#include <stdint.h>
#include <string.h>
#include "strfunc.h"
#include "mlx90640.h"
#include "mlx90640_regs.h"
#include "testdata.h"
static const char *OK = "OK\n", *OKs = "OK ", *NOTEQ = "NOT equal!\n", *NOTEQi = "NOT equal on index ";
// tolerance of floating point comparison
#define FP_TOLERANCE (1e-3)
static fp_t mlx_image[MLX_PIXNO] = {0}; // ready image
void dumpIma(const fp_t im[MLX_PIXNO]){
for(int row = 0; row < MLX_H; ++row){
for(int col = 0; col < MLX_W; ++col){
printfl(*im++, 1);
USB_putbyte(' ');
}
newline();
}
}
#define GRAY_LEVELS (16)
// 16-level character set ordered by fill percentage (provided by user)
static const char* CHARS_16 = " .':;+*oxX#&%B$@";
void drawIma(const fp_t im[MLX_PIXNO]){
// Find min and max values
fp_t min_val = im[0], max_val = im[0];
const fp_t *iptr = im;
for(int row = 0; row < MLX_H; ++row){
for(int col = 0; col < MLX_W; ++col){
fp_t cur = *iptr++;
if(cur < min_val) min_val = cur;
else if(cur > max_val) max_val = cur;
}
}
fp_t range = max_val - min_val;
if(fabsf(range) < 0.001) range = 1.; // solid fill -> blank
// Generate and print ASCII art
iptr = im;
newline();
for(int row = 0; row < MLX_H; ++row){
for(int col = 0; col < MLX_W; ++col){
fp_t normalized = ((*iptr++) - min_val) / range;
// Map to character index (0 to 15)
int index = (int)(normalized * (GRAY_LEVELS-1) + 0.5);
// Ensure we stay within bounds
if(index < 0) index = 0;
else if(index > (GRAY_LEVELS-1)) index = (GRAY_LEVELS-1);
USB_putbyte(CHARS_16[index]);
}
newline();
}
newline();
}
static void chki(const char *name, int16_t param, int16_t standard){
USB_sendstr(name); USB_sendstr(" - ");
printi(param); USB_sendstr(" - ");
printi(standard); USB_sendstr(" - ");
if(param != standard){
USB_sendstr(NOTEQ);
}
USB_sendstr(OK);
}
static void chkf(const char *name, fp_t param, fp_t standard){
USB_sendstr(name); USB_sendstr(" - ");
printfl(param, 3); USB_sendstr(" - ");
printfl(standard, 3); USB_sendstr(" - ");
fp_t diff = (fabsf(param) + fabsf(standard)) * FP_TOLERANCE;
if(fabsf(param - standard) > diff){
USB_sendstr(NOTEQ);
}
USB_sendstr(OK);
}
static void chkfa(const char *name, const fp_t *ap, const fp_t *as, int n){
USB_sendstr(name); USB_sendstr(" - (array) - (size");
printi(n); USB_sendstr(") - ");
for(int i = 0; i < n; ++i){
fp_t diff = (fabsf(as[i]) + fabsf(ap[i])) * FP_TOLERANCE;
if(fabsf(ap[i] - as[i]) > diff){
USB_sendstr(NOTEQi); printi(i); newline();
return;
}
}
USB_sendstr(OKs);
int nmax = (n < 5) ? n : 5;
for(int i = 0; i < nmax; ++i){
printfl(ap[i], 2); USB_putbyte(' ');
}
newline();
}
static void chku8a(const char *name, const uint8_t *ap, const uint8_t *as, int n){
USB_sendstr(name); USB_sendstr(" - (array) - (size");
printi(n); USB_sendstr(") - ");
for(int i = 0; i < n; ++i){
if(ap[i] != as[i]){
USB_sendstr(NOTEQi); printi(i); newline();
return;
}
}
USB_sendstr(OKs);
int nmax = (n < 5) ? n : 5;
for(int i = 0; i < nmax; ++i){
printu(ap[i]); USB_putbyte(' ');
}
newline();
}
void chkImage(const fp_t Image[MLX_PIXNO], const fp_t To[MLX_PIXNO]){
chkfa("Image", Image, To, MLX_PIXNO);
}
void dump_parameters(MLX90640_params *params, const MLX90640_params *standard){
USB_sendstr("\n############################################\n# name - value - standard - test condition #\n");
USB_sendstr("############################################\n");
#define CHKI(f) do{chki(#f, params->f, standard->f);}while(0)
#define CHKF(f) do{chkf(#f, params->f, standard->f);}while(0)
#define CHKFA(f, n) do{chkfa(#f, params->f, standard->f, n);}while(0)
#define CHKU8A(f, n) do{chku8a(#f, params->f, standard->f, n);}while(0)
CHKI(kVdd);
CHKI(vdd25);
CHKF(KvPTAT);
CHKI(vPTAT25);
CHKF(alphaPTAT);
CHKI(gainEE);
CHKF(tgc);
CHKF(cpKv);
CHKF(cpKta);
CHKF(KsTa);
CHKFA(CT, 3);
CHKFA(KsTo, 4);
CHKFA(alpha, MLX_PIXNO);
CHKFA(offset, MLX_PIXNO);
CHKFA(kta, MLX_PIXNO);
CHKFA(kv, 4);
CHKFA(cpAlpha, 2);
CHKI(resolEE);
CHKI(cpOffset[0]); CHKI(cpOffset[1]);
CHKU8A(outliers, MLX_PIXNO);
#undef CHKI
#undef CHKF
}
/*****************************************************************************
Calculate parameters & values
*****************************************************************************/
// fill OCC/ACC row/col arrays
static void occacc(int8_t *arr, int l, const uint16_t *regstart){
int n = l >> 2; // divide by 4
int8_t *p = arr;
for(int i = 0; i < n; ++i){
register uint16_t val = *regstart++;
*p++ = (val & 0x000F) >> 0;
*p++ = (val & 0x00F0) >> 4;
*p++ = (val & 0x0F00) >> 8;
*p++ = (val ) >> 12;
}
for(int i = 0; i < l; ++i, ++arr){
if(*arr > 0x07) *arr -= 0x10;
}
}
// get all parameters' values from `dataarray`, return FALSE if something failed
int get_parameters(const uint16_t dataarray[MLX_DMA_MAXLEN], MLX90640_params *params){
#define CREG_VAL(reg) dataarray[CREG_IDX(reg)]
int8_t i8;
int16_t i16;
uint16_t *pu16;
uint16_t val = CREG_VAL(REG_VDD);
i8 = (int8_t) (val >> 8);
params->kVdd = i8 * 32; // keep sign
if(params->kVdd == 0) return FALSE;
i16 = val & 0xFF;
params->vdd25 = ((i16 - 0x100) * 32) - (1<<13);
val = CREG_VAL(REG_KVTPTAT);
i16 = (val & 0xFC00) >> 10;
if(i16 > 0x1F) i16 -= 0x40;
params->KvPTAT = (fp_t)i16 / (1<<12);
i16 = (val & 0x03FF);
if(i16 > 0x1FF) i16 -= 0x400;
params->KtPTAT = (fp_t)i16 / 8.;
params->vPTAT25 = (int16_t) CREG_VAL(REG_PTAT);
val = CREG_VAL(REG_APTATOCCS) >> 12;
params->alphaPTAT = val / 4. + 8.;
params->gainEE = (int16_t)CREG_VAL(REG_GAIN);
if(params->gainEE == 0) return FALSE;
int8_t occRow[MLX_H];
int8_t occColumn[MLX_W];
occacc(occRow, MLX_H, &CREG_VAL(REG_OCCROW14));
occacc(occColumn, MLX_W, &CREG_VAL(REG_OCCCOL14));
int8_t accRow[MLX_H];
int8_t accColumn[MLX_W];
occacc(accRow, MLX_H, &CREG_VAL(REG_ACCROW14));
occacc(accColumn, MLX_W, &CREG_VAL(REG_ACCCOL14));
val = CREG_VAL(REG_APTATOCCS);
// need to do multiplication instead of bitshift, so:
fp_t occRemScale = 1<<(val&0x0F),
occColumnScale = 1<<((val>>4)&0x0F),
occRowScale = 1<<((val>>8)&0x0F);
int16_t offavg = (int16_t) CREG_VAL(REG_OSAVG);
// even/odd column/row numbers are for starting from 1, so for starting from 0 we should swap them:
// even - for 1,3,5,...; odd - for 0,2,4,... etc
int8_t ktaavg[4];
// 0 - odd row, odd col; 1 - odd row even col; 2 - even row, odd col; 3 - even row, even col
val = CREG_VAL(REG_KTAAVGODDCOL);
ktaavg[2] = (int8_t)(val & 0xFF); // odd col (1,3,..), even row (2,4,..) -> col 0,2,..; row 1,3,..
ktaavg[0] = (int8_t)(val >> 8); // odd col, odd row -> col 0,2,..; row 0,2,..
val = CREG_VAL(REG_KTAAVGEVENCOL);
ktaavg[3] = (int8_t)(val & 0xFF); // even col, even row -> col 1,3,..; row 1,3,..
ktaavg[1] = (int8_t)(val >> 8); // even col, odd row -> col 1,3,..; row 0,2,..
// so index of ktaavg is 2*(row&1)+(col&1)
val = CREG_VAL(REG_KTAVSCALE);
uint8_t scale1 = ((val & 0xFF)>>4) + 8, scale2 = (val&0xF);
if(scale1 == 0 || scale2 == 0) return FALSE;
fp_t mul = (fp_t)(1<<scale2), div = (fp_t)(1<<scale1); // kta_scales
uint16_t a_r = CREG_VAL(REG_SENSIVITY); // alpha_ref
val = CREG_VAL(REG_SCALEACC);
fp_t *a = params->alpha;
uint32_t diva32 = 1 << (val >> 12);
fp_t diva = (fp_t)(diva32);
diva *= (fp_t)(1<<30); // alpha_scale
fp_t accRowScale = 1<<((val & 0x0f00)>>8),
accColumnScale = 1<<((val & 0x00f0)>>4),
accRemScale = 1<<(val & 0x0f);
pu16 = (uint16_t*)&CREG_VAL(REG_OFFAK1);
fp_t *kta = params->kta, *offset = params->offset;
uint8_t *ol = params->outliers;
for(int row = 0; row < MLX_H; ++row){
int idx = (row&1)<<1;
for(int col = 0; col < MLX_W; ++col){
// offset
register uint16_t rv = *pu16++;
i16 = (rv & 0xFC00) >> 10;
if(i16 > 0x1F) i16 -= 0x40;
*offset++ = (fp_t)offavg + (fp_t)occRow[row]*occRowScale + (fp_t)occColumn[col]*occColumnScale + (fp_t)i16*occRemScale;
// kta
i16 = (rv & 0xF) >> 1;
if(i16 > 0x03) i16 -= 0x08;
*kta++ = (ktaavg[idx|(col&1)] + i16*mul) / div;
// alpha
i16 = (rv & 0x3F0) >> 4;
if(i16 > 0x1F) i16 -= 0x40;
fp_t oft = (fp_t)a_r + accRow[row]*accRowScale + accColumn[col]*accColumnScale +i16*accRemScale;
*a++ = oft / diva;
*ol++ = (rv&1) ? 1 : 0;
}
}
scale1 = (CREG_VAL(REG_KTAVSCALE) >> 8) & 0xF; // kvscale
div = (fp_t)(1<<scale1);
val = CREG_VAL(REG_KVAVG);
// kv indexes: +2 for odd (<28><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>) rows, +1 for odd columns, so:
// [ 3, 2; 1, 0] for left upper corner (because datashit counts from 1, not from 0!)
i16 = val >> 12; if(i16 > 0x07) i16 -= 0x10;
ktaavg[0] = (int8_t)i16; // odd col, odd row
i16 = (val & 0xF0) >> 4; if(i16 > 0x07) i16 -= 0x10;
ktaavg[1] = (int8_t)i16; // even col, odd row
i16 = (val & 0x0F00) >> 8; if(i16 > 0x07) i16 -= 0x10;
ktaavg[2] = (int8_t)i16; // odd col, even row
i16 = val & 0x0F; if(i16 > 0x07) i16 -= 0x10;
ktaavg[3] = (int8_t)i16; // even col, even row
for(int i = 0; i < 4; ++i) params->kv[i] = ktaavg[i] / div;
val = CREG_VAL(REG_CPOFF);
params->cpOffset[0] = (val & 0x03ff);
if(params->cpOffset[0] > 0x1ff) params->cpOffset[0] -= 0x400;
params->cpOffset[1] = val >> 10;
if(params->cpOffset[1] > 0x1f) params->cpOffset[1] -= 0x40;
params->cpOffset[1] += params->cpOffset[0];
val = ((CREG_VAL(REG_KTAVSCALE) & 0xF0) >> 4) + 8;
i8 = (int8_t)(CREG_VAL(REG_KVTACP) & 0xFF);
params->cpKta = (fp_t)i8 / (1<<val);
val = (CREG_VAL(REG_KTAVSCALE) & 0x0F00) >> 8;
i16 = CREG_VAL(REG_KVTACP) >> 8;
if(i16 > 0x7F) i16 -= 0x100;
params->cpKv = (fp_t)i16 / (1<<val);
i16 = CREG_VAL(REG_KSTATGC) & 0xFF;
if(i16 > 0x7F) i16 -= 0x100;
params->tgc = (fp_t)i16;
params->tgc /= 32.;
val = (CREG_VAL(REG_SCALEACC)>>12); // alpha_scale_CP
i16 = CREG_VAL(REG_ALPHA)>>10; // cp_P1_P0_ratio
if(i16 > 0x1F) i16 -= 0x40;
div = (fp_t)(1<<val);
div *= (fp_t)(1<<27);
params->cpAlpha[0] = (fp_t)(CREG_VAL(REG_ALPHA) & 0x03FF) / div;
div = (fp_t)(1<<7);
params->cpAlpha[1] = params->cpAlpha[0] * (1. + (fp_t)i16/div);
i8 = (int8_t)(CREG_VAL(REG_KSTATGC) >> 8);
params->KsTa = (fp_t)i8/(1<<13);
div = 1<<((CREG_VAL(REG_CT34) & 0x0F) + 8); // kstoscale
val = CREG_VAL(REG_KSTO12);
i8 = (int8_t)(val & 0xFF);
params->KsTo[0] = i8 / div;
i8 = (int8_t)(val >> 8);
params->KsTo[1] = i8 / div;
val = CREG_VAL(REG_KSTO34);
i8 = (int8_t)(val & 0xFF);
params->KsTo[2] = i8 / div;
i8 = (int8_t)(val >> 8);
params->KsTo[3] = i8 / div;
// CT1 = -40, CT2 = 0 -> start from zero index, so CT[0] is CT2, CT[1] is CT3, CT[2] is CT4
params->CT[0] = 0.; // 0degr - between ranges 1 and 2
val = CREG_VAL(REG_CT34);
mul = ((val & 0x3000)>>12)*10.; // step
params->CT[1] = ((val & 0xF0)>>4)*mul; // CT3 - between ranges 2 and 3
params->CT[2] = ((val & 0x0F00) >> 8)*mul + params->CT[1]; // CT4 - between ranges 3 and 4
// alphacorr for each range: 11.1.11
params->alphacorr[0] = 1./(1. + params->KsTo[0] * 40.);
params->alphacorr[1] = 1.;
params->alphacorr[2] = (1. + params->KsTo[1] * params->CT[1]);
params->alphacorr[3] = (1. + params->KsTo[2] * (params->CT[2] - params->CT[1])) * params->alphacorr[2];
params->resolEE = (uint8_t)((CREG_VAL(REG_KTAVSCALE) & 0x3000) >> 12);
// Don't forget to check 'outlier' flags for wide purpose
return TRUE;
#undef CREG_VAL
}
/**
* @brief process_subpage - calculate all parameters from `dataarray` into `mlx_image`
* @param subpageno - number of subpage
* @param simpleimage == 0 - simplest, 1 - narrow range, 2 - extended range
*/
fp_t *process_subpage(MLX90640_params *params, const int16_t Frame[MLX_DMA_MAXLEN], int subpageno, int simpleimage){
#define IMD_VAL(reg) Frame[IMD_IDX(reg)]
// 11.2.2.1. Resolution restore
// temporary:
fp_t resol_corr = (fp_t)(1<<params->resolEE) / (1<<2); // calibrated resol/current resol
//fp_t resol_corr = (fp_t)(1<<params->resolEE) / (1<<((reg_control_val[subpageno]&0x0C00)>>10)); // calibrated resol/current resol
//DBG("resolEE=%d, resolCur=%d", params->resolEE, ((reg_control_val[subpageno]&0x0C00)>>10));
// 11.2.2.2. Supply voltage value calculation
int16_t i16a = (int16_t)IMD_VAL(REG_IVDDPIX);
fp_t dvdd = resol_corr*i16a - params->vdd25;
dvdd /= params->kVdd;
fp_t dV = i16a - params->vdd25; // for next step
dV /= params->kVdd;
// 11.2.2.3. Ambient temperature calculation
i16a = (int16_t)IMD_VAL(REG_ITAPTAT);
int16_t i16b = (int16_t)IMD_VAL(REG_ITAVBE);
fp_t dTa = (fp_t)i16a / (i16a * params->alphaPTAT + i16b); // vptatart
dTa *= (fp_t)(1<<18);
dTa = (dTa / (1. + params->KvPTAT*dV)) - params->vPTAT25;
dTa = dTa / params->KtPTAT; // without 25degr - Ta0
// 11.2.2.4. Gain parameter calculation
i16a = (int16_t)IMD_VAL(REG_IGAIN);
fp_t Kgain = params->gainEE / (fp_t)i16a;
fp_t pixOS[2]; // pix_gain_CP_SPx
// 11.2.2.6.1
pixOS[0] = ((int16_t)IMD_VAL(REG_ICPSP0))*Kgain; // pix_OS_CP_SPx
pixOS[1] = ((int16_t)IMD_VAL(REG_ICPSP1))*Kgain;
for(int i = 0; i < 2; ++i){ // calc pixOS by gain
// 11.2.2.6.2
pixOS[i] -= params->cpOffset[i]*(1. + params->cpKta*dTa)*(1. + params->cpKv*dvdd);
}
// now make first approximation to image
uint16_t pixno = 0; // current pixel number - for indexing in parameters etc
for(int row = 0, rowidx = 0; row < MLX_H; ++row, rowidx ^= 2){
for(int col = 0, idx = rowidx; col < MLX_W; ++col, ++pixno, idx ^= 1){
uint8_t sp = (row&1)^(col&1); // subpage of current pixel
if(sp != subpageno) continue;
// 11.2.2.5.1
fp_t curval = (fp_t)(Frame[pixno]) * Kgain; // gain compensation
// 11.2.2.5.3
curval -= params->offset[pixno] * (1. + params->kta[pixno]*dTa) *
(1. + params->kv[idx]*dvdd); // add offset
// now `curval` is pix_OS == V_IR_emiss_comp (we can divide it by `emissivity` to compensate for it)
// 11.2.2.7: 'Pattern' is just subpage number!
fp_t IRcompens = curval - params->tgc * pixOS[subpageno]; // 11.2.2.8. Normalizing to sensitivity
if(simpleimage == 0){ // 13.3. Using the device in ?image mode?
curval = IRcompens;
}else{
// 11.2.2.8
fp_t alphaComp = params->alpha[pixno] - params->tgc * params->cpAlpha[subpageno];
alphaComp *= 1. + params->KsTa * dTa;
// 11.2.2.9: calculate To for basic range
fp_t Tar = dTa + 273.15 + 25.; // Ta+273.15
Tar = Tar*Tar*Tar*Tar; // T_aK4 (when \epsilon==1 this is T_{a-r} too)
fp_t ac3 = alphaComp*alphaComp*alphaComp;
fp_t Sx = ac3*IRcompens + alphaComp*ac3*Tar;
Sx = params->KsTo[1] * SQRT(SQRT(Sx));
fp_t To4 = IRcompens / (alphaComp * (1. - 273.15*params->KsTo[1]) + Sx) + Tar;
curval = SQRT(SQRT(To4)) - 273.15;
if(simpleimage == 2){ // 11.2.2.9.1.3. Extended To range calculation
int r = 0; // range 1 by default
fp_t ctx = -40.;
if(curval > params->CT[2]){ // range 4
r = 3; ctx = params->CT[2];
}else if(curval > params->CT[1]){ // range 3
r = 2; ctx = params->CT[1];
}else if(curval > params->CT[0]){ // range 2, default
r = 1; ctx = params->CT[0];
}
if(r != 1){ // recalculate for extended range if we are out of standard range
To4 = IRcompens / (alphaComp * params->alphacorr[r] * (1. + params->KsTo[r]*(curval - ctx))) + Tar;
curval = SQRT(SQRT(To4)) - 273.15;
}
}
}
mlx_image[pixno] = curval;
}
}
return mlx_image;
#undef IMD_VAL
}
int MLXtest(){
MLX90640_params p;
USB_sendstr(" Extract parameters - ");
if(!get_parameters(EEPROM, &p)) return 2;
USB_sendstr(OK);
dump_parameters(&p, &extracted_parameters);
fp_t *sp;
for(int i = 0; i < 2; ++i){
USB_sendstr(" 100 times process subpage - "); printi(i); USB_putbyte(' ');
uint32_t Tstart = Tms;
for(int _ = 0; _ < 100; ++_){
sp = process_subpage(&p, DataFrame[i], i, 2);
if(!sp) return 1;
}
USB_sendstr(OKs); printfl((Tms - Tstart)/100.f, 3); USB_sendstr(" ms\n");
dumpIma(sp);
chkImage(sp, ToFrame[i]);
}
drawIma(sp);
return 0;
}