2021-01-26 23:12:32 +03:00

108 lines
3.6 KiB
C

/*
* This file is part of the pwmtest project.
* Copyright 2020 Edward V. Emelianov <edward.emelianoff@gmail.com>.
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "hardware.h"
#include "proto.h"
#include "usb.h"
static uint32_t PWM_freq = 80000; // 80kHz
static uint32_t PWM_duty = 50; // PWM duty cycle in promille
static inline void gpio_setup(){
// Enable clocks to the GPIO subsystems (PB for ADC), turn on AFIO clocking to disable SWD/JTAG
RCC->APB2ENR |= RCC_APB2ENR_IOPAEN | RCC_APB2ENR_IOPCEN | RCC_APB2ENR_AFIOEN;
// turn off SWJ/JTAG
// AFIO->MAPR = AFIO_MAPR_SWJ_CFG_DISABLE;
AFIO->MAPR = AFIO_MAPR_SWJ_CFG_JTAGDISABLE; // for PA15
// Set led as opendrain output
GPIOC->CRH |= CRH(13, CNF_ODOUTPUT|MODE_SLOW);
// USB pullup (PA15) - pushpull output, PA8 - alternate
GPIOA->CRH = CRH(15, CNF_PPOUTPUT|MODE_SLOW) | CRH(8, CNF_AFPP | MODE_FAST);
}
static inline void tim1_setup(){
RCC->APB2ENR |= RCC_APB2ENR_TIM1EN; // enable TIM1 clocking
TIM1->PSC = 8; // 8MHz
TIM1->ARR = 99; // 100 ticks for 80kHz
TIM1->CCR1 = 49; // 50%
// PWM mode 1 (active->inactive)
TIM1->CCMR1 = TIM_CCMR1_OC1M_2 | TIM_CCMR1_OC1M_1 | TIM_CCMR1_OC1PE;
// main output
TIM1->BDTR = TIM_BDTR_MOE;
// main PWM output
TIM1->CCER = TIM_CCER_CC1E;
// turn it on
TIM1->CR1 = TIM_CR1_CEN;// | TIM_CR1_ARPE;
TIM1->EGR |= TIM_EGR_UG; // generate update event to refresh all
}
static void refresh_ccr1(){
if(PWM_duty == 0){
TIM1->CCR1 = 0;
return;
}
uint32_t ccr1 = (PWM_duty*(TIM1->ARR+1.))/1000;
USB_send("New CCR1: "); USB_send(u2str(ccr1)); USB_send("\n");
TIM1->CCR1 = ccr1;
}
// return 0 if can't change or return 1
int changePWMfreq(uint32_t freq){
if(!freq) return 0; // zero frequency
uint32_t ARRPSC = (uint32_t)TIM1FREQ / freq;
// both ARR and PSC have 16 bits
if(ARRPSC < 100) return 0; // frequency too big
// 1hz: ARRPSC=72000000, ARR=1098, PSC=65513; Freq=72000000/1099/65514=1.0000016Hz
// 98kHz: ARRPSC=734, ARR=0, PSC=733; Freq=72000000/1/734=98092Hz
uint32_t PSC = ARRPSC >> 16;
uint32_t ARR = ARRPSC / (PSC+1) - 1;
PWM_freq = TIM1FREQ/(ARR+1.)/(PSC+1.);
TIM1->ARR = ARR;
TIM1->PSC = PSC;
USB_send("New PSC: "); USB_send(u2str(PSC));
USB_send("\nNew ARR: "); USB_send(u2str(ARR)); USB_send("\n");
refresh_ccr1();
return 1;
}
// change duty; return 0 if wrong, 1 if OK (duty in promille)
int changePWMduty(uint32_t duty){
if(duty > 1000) return 0; // wrong duty
PWM_duty = duty;
refresh_ccr1();
return 1;
}
void hw_setup(){
gpio_setup();
tim1_setup();
}
void iwdg_setup(){
uint32_t tmout = 16000000;
RCC->CSR |= RCC_CSR_LSION;
while((RCC->CSR & RCC_CSR_LSIRDY) != RCC_CSR_LSIRDY){if(--tmout == 0) break;} /* (2) */
IWDG->KR = IWDG_START;
IWDG->KR = IWDG_WRITE_ACCESS;
IWDG->PR = IWDG_PR_PR_1;
IWDG->RLR = 1250;
tmout = 16000000;
while(IWDG->SR){if(--tmout == 0) break;}
IWDG->KR = IWDG_REFRESH;
}