2022-03-10 11:04:14 +03:00

238 lines
8.1 KiB
C

/*
* geany_encoding=koi8-r
* i2c.c
*
* Copyright 2017 Edward V. Emelianov <eddy@sao.ru, edward.emelianoff@gmail.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
* MA 02110-1301, USA.
*
*/
#include "stm32f0.h"
#include "i2c.h"
/**
* I2C for HTU21D
* Speed <= 400kHz (200)
* t_SCLH ~ 0.6us
* t_SCLL ~ 1.3us
* t_SU >= 100ns
* t_HD <= 900ns
* t_VD <= 400ns
*
* After start 15ms pause for IDLE
* Start bit: SCK=1, DATA 1->0
* Stop bit: SCK 0->1, DATA 0->1
* Address: 0x40 (7bit), 0th bit - direction (0 - write, 1 - read)
* ACK: DATA->0 on 8th SCK clock
* Commands: 0xE3[F3] - temperature, 0xE5[F5] - humidity [No hold master]
* 0xE6 - write user register, 0xE7 - read user register, 0xFE - soft reset
* 7 6 5 4 3 2 1 0
* User register: |D1|Vbat|reserved|Htr|Odis|D0| default: 0x02
* D1D0 - resolution [H/T]: 00-12/14, 01-8/12, 10-10/13, 11-11/11
* Vbat=1 vhen Vdd<2.25V, Htr=1 to enable on-chip heater,
* Odis=0 to enable OTP reload (after each measurement reload defaults)
*
* in = in & 0xFFFC;
* Calculations: RH = -6 + 125*Hum/2^16
* T = -46.85 + 175.72*Temp/2^16
*/
/*
* Resources: I2C1_SCL - PA9, I2C1_SDA - PA10
* GPIOA->AFR[1] AF4 -- GPIOA->AFR[1] &= ~0xff0, GPIOA->AFR[1] |= 0x440
*/
extern volatile uint32_t Tms;
static uint32_t cntr;
void i2c_setup(){
// GPIO
RCC->AHBENR |= RCC_AHBENR_GPIOAEN; // clock
GPIOA->AFR[1] &= ~0xff0; // alternate function F4 for PA9/PA10
GPIOA->AFR[1] |= 0x440;
GPIOA->OTYPER |= GPIO_OTYPER_OT_9 | GPIO_OTYPER_OT_10; // opendrain
GPIOA->MODER &= ~(GPIO_MODER_MODER9 | GPIO_MODER_MODER10);
GPIOA->MODER |= GPIO_MODER_MODER9_AF | GPIO_MODER_MODER10_AF; // alternate function
// I2C
RCC->APB1ENR |= RCC_APB1ENR_I2C1EN; // timing
RCC->CFGR3 |= RCC_CFGR3_I2C1SW; // use sysclock for timing
// Clock = 6MHz, 0.16(6)us, need 5us (*30)
// PRESC=4 (f/5), SCLDEL=0 (t_SU=5/6us), SDADEL=0 (t_HD=5/6us), SCLL,SCLH=14 (2.(3)us)
I2C1->TIMINGR = (4<<28) | (14<<8) | (14); // 0x40000e0e
I2C1->CR1 = I2C_CR1_PE;// | I2C_CR1_RXIE; // Enable I2C & (interrupt on receive - not supported yet)
}
// I2C2->TIMINGR = (uint32_t)0x00B01A4B;
// PRECS=0 - tpresc=20.8(3)ns, SCLDEL=B (tSU 12tpresc), SDADEL=0 (tHD=0), SCLH=1a (27), SCLL=4B (76)
// https://github.com/mattbrejza/magnet-node/blob/master/firmware-basestation/htu21.c
// prescaler = 1, low period = 0x13, high period = 0xf, hold time = 2, setup = 4
// I2C_TIMINGR(H_I2C) = (1<<28) | (4<<20) | (2<<16) | (0xf<<8) | 0x13;
/* transmit:
* I2Cx_CR2:
* Addressing mode (7-bit or 10-bit): ADD10
* Slave address to be sent: SADD[9:0]
* Transfer direction: I2C_CR2_RD_WRN=0
* The number of bytes to be transferred: NBYTES[7:0] (NBYTES<<16)
* You must then set the START bit in I2Cx_CR2 register.
* Automatic end mode (AUTOEND = '1' in the I2Cx_CR2 register),
* I2C1->CR2 = I2C_CR2_HEAD10R | SLAVE_ADDR; // 7bit, slave address
*/
// return 1 if all OK, 0 if NACK
uint8_t htu_write_i2c(uint8_t data){
cntr = Tms;
while(I2C1->ISR & I2C_ISR_BUSY) if(Tms - cntr > 5) return 0; // check busy
cntr = Tms;
while(I2C1->CR2 & I2C_CR2_START) if(Tms - cntr > 5) return 0; // check start
I2C1->CR2 = 1<<16 | HTU21_ADDR | I2C_CR2_AUTOEND; // 1 byte, autoend
// now start transfer
I2C1->CR2 |= I2C_CR2_START;
cntr = Tms;
while(!(I2C1->ISR & I2C_ISR_TXIS)){ // ready to transmit
if(I2C1->ISR & I2C_ISR_NACKF){
I2C1->ICR |= I2C_ICR_NACKCF;
return 0;
}
if(Tms - cntr > 5) return 0;
}
I2C1->TXDR = data; // send data
return 1;
}
#define SHIFTED_DIVISOR 0x988000 //This is the 0x0131 polynomial shifted to farthest left of three bytes
// check CRC, return 0 if all OK
uint32_t htu_check_crc(uint16_t data, uint8_t crc){
uint32_t remainder = (uint32_t)data << 8;
remainder |= crc;
uint32_t divsor = (uint32_t)SHIFTED_DIVISOR;
int i;
for(i = 0; i < 16; i++) {
if (remainder & (uint32_t)1 << (23 - i))
remainder ^= divsor;
divsor >>= 1;
}
return remainder;
}
// return 1 if all OK, 0 if NACK
uint8_t htu_read_i2c(uint16_t *data){
uint8_t buf[3];
cntr = Tms;
while(I2C1->ISR & I2C_ISR_BUSY) if(Tms - cntr > 5) return 0; // check busy
cntr = Tms;
while(I2C1->CR2 & I2C_CR2_START) if(Tms - cntr > 5) return 0; // check start
// read three bytes
I2C1->CR2 = 3<<16 | HTU21_ADDR | 1 | I2C_CR2_AUTOEND | I2C_CR2_RD_WRN;
I2C1->CR2 |= I2C_CR2_START;
int i;
cntr = Tms;
for(i = 0; i < 3; ++i){
while(!(I2C1->ISR & I2C_ISR_RXNE)){ // wait for data
if(I2C1->ISR & I2C_ISR_NACKF){
I2C1->ICR |= I2C_ICR_NACKCF;
return 0;
}
if(Tms - cntr > 5) return 0;
}
buf[i] = I2C1->RXDR;
}
*data = (buf[0] << 8) | buf[1];
if(htu_check_crc(*data, buf[2])) return 1; // CRC error
return 1;
}
// return 0 if all OK
uint8_t htu_read_reg(uint8_t *data){
cntr = Tms;
while(I2C1->ISR & I2C_ISR_BUSY) if(Tms - cntr > 5) return 0; // check busy
cntr = Tms;
while(I2C1->CR2 & I2C_CR2_START) if(Tms - cntr > 5) return 0; // check start
I2C1->CR2 = 1<<16 | HTU21_ADDR; // 1 byte
I2C1->CR2 |= I2C_CR2_START;
cntr = Tms;
while(!(I2C1->ISR & I2C_ISR_TXIS)){ // ready to transmit
if(I2C1->ISR & I2C_ISR_NACKF){
I2C1->ICR |= I2C_ICR_NACKCF;
return 0;
}
if(Tms - cntr > 5) return 0;
}
I2C1->TXDR = HTU21_READ_REG;
cntr = Tms;
while(!(I2C1->ISR & I2C_ISR_TC)) if(Tms - cntr > 5) return 0; // wait transfer completion
I2C1->CR2 = 1<<16 | HTU21_ADDR | 1 | I2C_CR2_RD_WRN | I2C_CR2_AUTOEND; // receive, autoend
I2C1->CR2 |= I2C_CR2_START;
cntr = Tms;
while(!(I2C1->ISR & I2C_ISR_RXNE)){ // wait for data
if(I2C1->ISR & I2C_ISR_NACKF){
I2C1->ICR |= I2C_ICR_NACKCF;
return 0;
}
if(Tms - cntr > 5) return 0;
}
*data = I2C1->RXDR;
return 1;
}
uint8_t htu_write_reg(uint8_t data){
cntr = Tms;
while(I2C1->ISR & I2C_ISR_BUSY) if(Tms - cntr > 5) return 0; // check busy
cntr = Tms;
while(I2C1->CR2 & I2C_CR2_START) if(Tms - cntr > 5) return 0; // check start
I2C1->CR2 = 1<<16 | HTU21_ADDR; // 1 byte
I2C1->CR2 |= I2C_CR2_START;
cntr = Tms;
while(!(I2C1->ISR & I2C_ISR_TXIS)){ // ready to transmit
if(I2C1->ISR & I2C_ISR_NACKF){
I2C1->ICR |= I2C_ICR_NACKCF;
return 0;
}
if(Tms - cntr > 5) return 0;
}
I2C1->TXDR = HTU21_WRITE_REG;
cntr = Tms;
while(!(I2C1->ISR & I2C_ISR_TC)) if(Tms - cntr > 5) return 0; // wait transfer completion
I2C1->CR2 |= I2C_CR2_AUTOEND; // receive, autoend
I2C1->CR2 |= I2C_CR2_START;
cntr = Tms;
while(!(I2C1->ISR & I2C_ISR_TXIS)){ // ready to transmit
if(I2C1->ISR & I2C_ISR_NACKF){
I2C1->ICR |= I2C_ICR_NACKCF;
return 0;
}
if(Tms - cntr > 5) return 0;
}
I2C1->TXDR = data;
return 1;
}
//output in Cx10
int16_t convert_temperature(uint16_t in){
in = in & 0xFFFC;
uint32_t a = (uint32_t)in * 17572;
a >>= 16;
int16_t val = ((int16_t)a - 4685)/10;
return val;
}
//output in %x10
int16_t convert_humidity(uint16_t in){
in = in & 0xFFFC;
uint32_t a = (uint32_t)in * 1250;
a >>= 16;
int16_t val = (int16_t)a - 60;
return val;
}