194 lines
6.3 KiB
C

/*
* This file is part of the ir-allsky project.
* Copyright 2025 Edward V. Emelianov <edward.emelianoff@gmail.com>.
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <stm32f3.h>
#include <string.h>
#include "hardware.h"
#include "ringbuffer.h"
#include "usart.h"
// unlike USB where you can hold NACK until user process frees ringbuffer, here we can't do that
// so USART writing forced by user (ringbuffer full or timeout by `usart_chk`)
extern volatile uint32_t Tms;
// flags
static volatile uint8_t bufovr = 0, // input buffer overfull
rbufno = 0, // index of active receiving buffer
txrdy = 1; // transmission done
static char rbuf[2][UARTBUFSZI]; // double receiving buffer
static char *recvdata = NULL; // pointer to last received data
static volatile int recvdatalen = 0;
// to transmit images we reserve circular buffer large enough to hold full image
static uint8_t rbdata[DMARBSZ];
static ringbuffer dmarb = {.data = rbdata, .length = DMARBSZ, .head = 0, .tail = 0};
static int transmit_tbuf();
// return 1 if overflow was
int usart_ovr(){
if(bufovr){
bufovr = 0;
return 1;
}
return 0;
}
// check if the buffer was filled >TRANSMIT_DELAY ago (transmit it then)
void usart_process(){
transmit_tbuf();
}
/**
* @brief usart_getline - read one dataportion
* @param buf - user buffer
* @param len - its length
* @return amount of bytes
*/
char *usart_getline(int *len){
if(!recvdatalen) return NULL;
if(len) *len = recvdatalen;
recvdatalen = 0;
return recvdata;
}
// transmit next dataportion from ringbuffer
static int transmit_tbuf(){
static uint8_t tbuf[UARTBUFSZO];
uint32_t T0 = Tms;
while(!txrdy && Tms - T0 < RXRDY_TMOUT) IWDG->KR = IWDG_REFRESH;
if(!txrdy) return 0;
int l = RB_read(&dmarb, tbuf, UARTBUFSZO);
if(l < 1) return 1;
txrdy = 0;
DMA1_Channel4->CCR &= ~DMA_CCR_EN;
DMA1_Channel4->CMAR = (uint32_t) tbuf;
DMA1_Channel4->CNDTR = l;
DMA1_Channel4->CCR |= DMA_CCR_EN;
return 1;
}
// return 0 if can't write to ringbuffer
int usart_putchar(const char ch){
int r = RB_write(&dmarb, (uint8_t*)&ch, 1);
if(r != 1){
if(transmit_tbuf()) r = RB_write(&dmarb, (uint8_t*)&ch, 1);
}
return r;
}
// @return amount of written bytes
int usart_send(const uint8_t *data, int len){
if(len > DMARBSZ) return FALSE;
int L = 0;
do{
int r = RB_write(&dmarb, data, len - L);
if(r < 1){
if(!transmit_tbuf()) return L;
else continue;
}
L += r;
data += r;
}while(L < len);
return L;
}
// WARNING! strlen of `str` should be less than RBout size!
// @return amount of written bytes
int usart_sendstr(const char *str){
return usart_send((uint8_t*)str, strlen(str));
}
// USART1: Rx - PA10 (AF7), Tx - PA9 (AF7)
int usart_setup(uint32_t speed){
if(speed < 200 || speed > 3000000) return FALSE;
// setup pins:
GPIOA->MODER = (GPIOA->MODER & (MODER_CLR(9) & MODER_CLR(10))) |
MODER_AF(9) | MODER_AF(10);
GPIOA->AFR[1] = (GPIOA->AFR[1] & ~(GPIO_AFRH_AFRH1 | GPIO_AFRH_AFRH2)) |
AFRf(7, 9) | AFRf(7, 10);
// clock
RCC->APB2ENR |= RCC_APB2ENR_USART1EN;
RCC->AHBENR |= RCC_AHBENR_DMA1EN;
USART1->ICR = 0xffffffff; // clear all flags
// Tx DMA
DMA1_Channel4->CCR = 0;
DMA1_Channel4->CPAR = (uint32_t) &USART1->TDR; // periph
DMA1_Channel4->CCR |= DMA_CCR_MINC | DMA_CCR_DIR | DMA_CCR_TCIE; // 8bit, mem++, mem->per, transcompl irq
// Rx DMA
DMA1_Channel5->CCR = 0;
DMA1_Channel5->CPAR = (uint32_t) &USART1->RDR; // periph
DMA1_Channel5->CMAR = (uint32_t) rbuf[0];
DMA1_Channel5->CNDTR = UARTBUFSZI;
DMA1_Channel5->CCR |= DMA_CCR_MINC | DMA_CCR_TCIE | DMA_CCR_EN; // 8bit, mem++, per->mem, transcompl irq, enable
// setup usart
USART1->BRR = SysFreq / speed;
USART1->CR3 = USART_CR3_DMAT | USART_CR3_DMAR; // enable DMA Tx/Rx
USART1->CR2 = USART_CR2_ADD_VAL('\n'); // init character match register: our input proto is string-based
USART1->CR1 = USART_CR1_TE | USART_CR1_RE | USART_CR1_UE | USART_CR1_CMIE; // 1start,8data,nstop; enable Rx,Tx,USART; enable CharacterMatch Irq
uint32_t tmout = 16000000;
while(!(USART1->ISR & USART_ISR_TC)){if(--tmout == 0) break;} // polling idle frame Transmission
USART1->ICR = 0xffffffff; // clear all flags again
NVIC_EnableIRQ(USART1_IRQn);
NVIC_EnableIRQ(DMA1_Channel4_IRQn);
NVIC_EnableIRQ(DMA1_Channel5_IRQn);
NVIC_SetPriority(DMA1_Channel5_IRQn, 0);
NVIC_SetPriority(USART1_IRQn, 4); // set character match priority lower
return TRUE;
}
void usart_stop(){
RCC->APB2ENR &= ~RCC_APB2ENR_USART1EN;
}
// USART1 character match interrupt
void usart1_exti25_isr(){
DMA1_Channel5->CCR &= ~DMA_CCR_EN; // temporaly disable DMA
USART1->ICR = USART_ICR_CMCF; // clear character match flag
register int l = UARTBUFSZI - DMA1_Channel5->CNDTR - 1; // substitute '\n' with '\0', omit empty strings!
if(l > 0){
if(recvdata){ // user didn't read old data - mark as buffer overflow
bufovr = 1;
}
recvdata = rbuf[rbufno];
recvdata[l] = 0;
rbufno = !rbufno;
recvdatalen = l;
}
DMA1_Channel5->CMAR = (uint32_t) rbuf[rbufno];
DMA1_Channel5->CNDTR = UARTBUFSZI;
DMA1_Channel5->CCR |= DMA_CCR_EN;
}
// USART1 Tx complete
void dma1_channel4_isr(){
DMA1->IFCR |= DMA_IFCR_CTCIF4;
txrdy = 1;
}
// USART1 Rx buffer overrun
void dma1_channel5_isr(){
DMA1_Channel5->CCR &= ~DMA_CCR_EN;
DMA1->IFCR |= DMA_IFCR_CTCIF5;
DMA1_Channel5->CMAR = (uint32_t) rbuf[rbufno];
DMA1_Channel5->CNDTR = UARTBUFSZI;
bufovr = 1;
DMA1_Channel5->CCR |= DMA_CCR_EN;
}