mirror of
https://github.com/eddyem/stm32samples.git
synced 2025-12-06 10:45:11 +03:00
269 lines
9.4 KiB
C
269 lines
9.4 KiB
C
/*
|
|
* This file is part of the Chiller project.
|
|
* Copyright 2018 Edward V. Emelianov <edward.emelianoff@gmail.com>.
|
|
*
|
|
* This program is free software: you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation, either version 3 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#include "adc.h"
|
|
#include "effects.h"
|
|
#include "hardware.h"
|
|
#include "usart.h"
|
|
|
|
uint32_t sg90step = SG90DEFSTEP;
|
|
|
|
static inline void iwdg_setup(){
|
|
/* Enable the peripheral clock RTC */
|
|
/* (1) Enable the LSI (40kHz) */
|
|
/* (2) Wait while it is not ready */
|
|
RCC->CSR |= RCC_CSR_LSION; /* (1) */
|
|
while((RCC->CSR & RCC_CSR_LSIRDY) != RCC_CSR_LSIRDY); /* (2) */
|
|
/* Configure IWDG */
|
|
/* (1) Activate IWDG (not needed if done in option bytes) */
|
|
/* (2) Enable write access to IWDG registers */
|
|
/* (3) Set prescaler by 64 (1.6ms for each tick) */
|
|
/* (4) Set reload value to have a rollover each 1s */
|
|
/* (5) Check if flags are reset */
|
|
/* (6) Refresh counter */
|
|
IWDG->KR = IWDG_START; /* (1) */
|
|
IWDG->KR = IWDG_WRITE_ACCESS; /* (2) */
|
|
IWDG->PR = IWDG_PR_PR_1; /* (3) */
|
|
IWDG->RLR = 625; /* (4) */
|
|
while(IWDG->SR); /* (5) */
|
|
IWDG->KR = IWDG_REFRESH; /* (6) */
|
|
}
|
|
|
|
static inline void adc_setup(){
|
|
uint16_t ctr = 0; // 0xfff0 - more than 1.3ms
|
|
// Enable clocking
|
|
/* (1) Enable the peripheral clock of the ADC */
|
|
/* (2) Start HSI14 RC oscillator */
|
|
/* (3) Wait HSI14 is ready */
|
|
RCC->APB2ENR |= RCC_APB2ENR_ADC1EN; /* (1) */
|
|
RCC->CR2 |= RCC_CR2_HSI14ON; /* (2) */
|
|
while ((RCC->CR2 & RCC_CR2_HSI14RDY) == 0 && ++ctr < 0xfff0){}; /* (3) */
|
|
// calibration
|
|
/* (1) Ensure that ADEN = 0 */
|
|
/* (2) Clear ADEN */
|
|
/* (3) Launch the calibration by setting ADCAL */
|
|
/* (4) Wait until ADCAL=0 */
|
|
if ((ADC1->CR & ADC_CR_ADEN) != 0){ /* (1) */
|
|
ADC1->CR &= (uint32_t)(~ADC_CR_ADEN); /* (2) */
|
|
}
|
|
ADC1->CR |= ADC_CR_ADCAL; /* (3) */
|
|
ctr = 0; // ADC calibration time is 5.9us
|
|
while ((ADC1->CR & ADC_CR_ADCAL) != 0 && ++ctr < 0xfff0){}; /* (4) */
|
|
// enable ADC
|
|
ctr = 0;
|
|
do{
|
|
ADC1->CR |= ADC_CR_ADEN;
|
|
}while ((ADC1->ISR & ADC_ISR_ADRDY) == 0 && ++ctr < 0xfff0);
|
|
// configure ADC
|
|
/* (1) Select HSI14 by writing 00 in CKMODE (reset value) */
|
|
/* (2) Select the continuous mode */
|
|
/* (3) Select CHSEL0..3 - ADC inputs, 16,17 - t. sensor and vref */
|
|
/* (4) Select a sampling mode of 111 i.e. 239.5 ADC clk to be greater than 17.1us */
|
|
/* (5) Wake-up the VREFINT and Temperature sensor (only for VBAT, Temp sensor and VRefInt) */
|
|
// ADC1->CFGR2 &= ~ADC_CFGR2_CKMODE; /* (1) */
|
|
ADC1->CFGR1 |= ADC_CFGR1_CONT; /* (2)*/
|
|
ADC1->CHSELR = ADC_CHSELR_CHSEL0 | ADC_CHSELR_CHSEL1 | ADC_CHSELR_CHSEL2 |
|
|
ADC_CHSELR_CHSEL3 | ADC_CHSELR_CHSEL16 | ADC_CHSELR_CHSEL17; /* (3)*/
|
|
ADC1->SMPR |= ADC_SMPR_SMP_0 | ADC_SMPR_SMP_1 | ADC_SMPR_SMP_2; /* (4) */
|
|
ADC->CCR |= ADC_CCR_TSEN | ADC_CCR_VREFEN; /* (5) */
|
|
// configure DMA for ADC
|
|
// DMA for AIN
|
|
/* (1) Enable the peripheral clock on DMA */
|
|
/* (2) Enable DMA transfer on ADC and circular mode */
|
|
/* (3) Configure the peripheral data register address */
|
|
/* (4) Configure the memory address */
|
|
/* (5) Configure the number of DMA tranfer to be performs on DMA channel 1 */
|
|
/* (6) Configure increment, size, interrupts and circular mode */
|
|
/* (7) Enable DMA Channel 1 */
|
|
RCC->AHBENR |= RCC_AHBENR_DMA1EN; /* (1) */
|
|
ADC1->CFGR1 |= ADC_CFGR1_DMAEN | ADC_CFGR1_DMACFG; /* (2) */
|
|
DMA1_Channel1->CPAR = (uint32_t) (&(ADC1->DR)); /* (3) */
|
|
DMA1_Channel1->CMAR = (uint32_t)(ADC_array); /* (4) */
|
|
DMA1_Channel1->CNDTR = NUMBER_OF_ADC_CHANNELS * 9; /* (5) */
|
|
DMA1_Channel1->CCR |= DMA_CCR_MINC | DMA_CCR_MSIZE_0 | DMA_CCR_PSIZE_0 | DMA_CCR_CIRC; /* (6) */
|
|
DMA1_Channel1->CCR |= DMA_CCR_EN; /* (7) */
|
|
ADC1->CR |= ADC_CR_ADSTART; /* start the ADC conversions */
|
|
}
|
|
|
|
/**
|
|
* @brief gpio_setup - setup GPIOs for external IO
|
|
* GPIO pinout:
|
|
* PF1 - open drain - ext. LED/laser
|
|
* PA0..PA3 - ADC_IN0..3
|
|
* PA4 - open drain - onboard LED (always ON when board works)
|
|
* PB1, PA6, PA7 - Alt. F. - PWM outputs
|
|
* Registers
|
|
* MODER - input/output/alternate/analog (2 bit)
|
|
* OTYPER - 0 pushpull, 1 opendrain
|
|
* OSPEEDR - x0 low, 01 medium, 11 high
|
|
* PUPDR - no/pullup/pulldown/resr (2 bit)
|
|
* IDR - input
|
|
* ODR - output
|
|
* BSRR - 0..15 - set, 16..31 - reset
|
|
* BRR - 0..15 - reset
|
|
* AFRL/AFRH - alternate functions (4 bit, AF: 0..7); L - AFR0..7, H - ARF8..15
|
|
*/
|
|
static inline void gpio_setup(){
|
|
// Enable clocks to the GPIO subsystems
|
|
RCC->AHBENR |= RCC_AHBENR_GPIOAEN | RCC_AHBENR_GPIOBEN | RCC_AHBENR_GPIOFEN;
|
|
// PA6/7 - AF; PB1 - AF
|
|
GPIOA->MODER = GPIO_MODER_MODER6_AF | GPIO_MODER_MODER7_AF |
|
|
GPIO_MODER_MODER0_AI | GPIO_MODER_MODER1_AI |
|
|
GPIO_MODER_MODER2_AI | GPIO_MODER_MODER3_AI |
|
|
GPIO_MODER_MODER4_O;
|
|
GPIOA->OTYPER = GPIO_OTYPER_OT_4;
|
|
GPIOB->MODER = GPIO_MODER_MODER1_AF;
|
|
//RCC->APB2ENR |= RCC_APB2ENR_SYSCFGEN; // enable syscfg clock for EXTI
|
|
GPIOF->ODR = 1<<1;
|
|
GPIOF->MODER = GPIO_MODER_MODER1_O;
|
|
GPIOF->OTYPER = GPIO_OTYPER_OT_1;
|
|
// alternate functions:
|
|
// PA6 - TIM3_CH1, PA7 - TIM3_CH2, PB1 - TIM3_CH4 (all - AF1)
|
|
GPIOA->AFR[0] = (GPIOA->AFR[0] &~ (GPIO_AFRL_AFRL6 | GPIO_AFRL_AFRL7)) \
|
|
| (1 << (6 * 4)) | (1 << (7 * 4));
|
|
GPIOB->AFR[0] = (GPIOB->AFR[0] &~ (GPIO_AFRL_AFRL1)) \
|
|
| (1 << (1 * 4)) ;
|
|
}
|
|
|
|
// change period of PWM
|
|
// MAX freq - 200Hz!!!
|
|
void setTIM3T(uint32_t T){
|
|
if(T < 1000 || T > 65536) return;
|
|
TIM3->ARR = T - 1;
|
|
// step = ampl / freq(Hz) * 3
|
|
sg90step = SG90_AMPL * T;
|
|
sg90step >>= 18; // /262144
|
|
}
|
|
|
|
static inline void timers_setup(){
|
|
// timer 3 ch1, 2, 4 PWM for three servos
|
|
RCC->APB1ENR |= RCC_APB1ENR_TIM3EN;
|
|
// PWM mode 1 (active -> inactive) on all three channels
|
|
TIM3->CCMR1 = TIM_CCMR1_OC1M_2 | TIM_CCMR1_OC1M_1 |
|
|
TIM_CCMR1_OC2M_2 | TIM_CCMR1_OC2M_1;
|
|
TIM3->CCMR2 = TIM_CCMR2_OC4M_2 | TIM_CCMR2_OC4M_1;
|
|
// frequency
|
|
TIM3->PSC = 47; // 1MHz -> 1us per tick
|
|
// ARR for 8-bit PWM
|
|
TIM3->ARR = 19999; // 50Hz
|
|
// enable main output
|
|
TIM3->BDTR |= TIM_BDTR_MOE;
|
|
// enable PWM output
|
|
TIM3->CCER = TIM_CCER_CC1E | TIM_CCER_CC2E | TIM_CCER_CC4E;
|
|
TIM3->DIER = TIM_DIER_UIE; //TIM_DIER_CC1IE | TIM_DIER_CC2IE | TIM_DIER_CC4IE;
|
|
// enable timer & ARR buffering
|
|
TIM3->CR1 |= TIM_CR1_CEN | TIM_CR1_ARPE;
|
|
RCC->AHBENR |= RCC_AHBENR_DMA1EN;
|
|
// DMA for more effects (channel 3 -> TIM3_UP)
|
|
DMA1_Channel3->CPAR = (uint32_t)(&(TIM3->DMAR)); // each writing to DMAR will change next register
|
|
// memsiz 16bit, psiz 32bit, memincrement, from memory, circulate
|
|
DMA1_Channel3->CCR |= DMA_CCR_MSIZE_0 | DMA_CCR_PSIZE_1
|
|
| DMA_CCR_MINC | DMA_CCR_DIR | DMA_CCR_CIRC;
|
|
TIM3->DCR = (1 << 8) | // DBL=1 -- two transfers
|
|
(((uint32_t)&TIM3->CCR1 - (uint32_t)&TIM3->CR1) >> 2); // reg = (DBA + TIM3->CR1)/4
|
|
NVIC_EnableIRQ(TIM3_IRQn);
|
|
}
|
|
|
|
void hw_setup(){
|
|
sysreset();
|
|
gpio_setup();
|
|
adc_setup();
|
|
timers_setup();
|
|
USART1_config();
|
|
iwdg_setup();
|
|
}
|
|
|
|
static uint32_t target_Val[3] = {SG90_MIDPULSE, SG90_MIDPULSE, SG90_MIDPULSE};
|
|
static uint32_t target_Speed[3] = {SG90DEFSTEP, SG90DEFSTEP, SG90DEFSTEP};
|
|
static uint8_t onpos[3] = {0,0,0};
|
|
volatile uint32_t *addr[3] = {&TIM3->CCR1, &TIM3->CCR2, &TIM3->CCR4};
|
|
|
|
int32_t getPWM(int nch){
|
|
return *addr[nch];
|
|
}
|
|
|
|
// return current value
|
|
int32_t setPWM(int nch, uint32_t val, uint32_t speed){
|
|
if(nch < 0 || nch > 2) return 0;
|
|
if(speed > 0){
|
|
if(speed > SG90_STEP) speed = SG90_STEP;
|
|
target_Speed[nch] = speed;
|
|
}
|
|
uint8_t ch = 1;
|
|
if(val >= SG90_MINPULSE && val <= SG90_MAXPULSE) target_Val[nch] = val;
|
|
else if(val == 0) target_Val[nch] = SG90_MINPULSE;
|
|
else if(val == 1) target_Val[nch] = SG90_MAXPULSE;
|
|
else if(val == 2) target_Val[nch] = SG90_MIDPULSE;
|
|
else ch = 0;
|
|
if(ch){
|
|
onpos[nch] = 0;
|
|
}
|
|
return *addr[nch];
|
|
}
|
|
|
|
uint8_t onposition(int nch){
|
|
return onpos[nch];
|
|
}
|
|
|
|
static void chkPWM(int n){
|
|
if(n < 0 || n > 2) return;
|
|
uint32_t cur = *addr[n], tg = target_Val[n];
|
|
if(cur == tg){
|
|
onpos[n] = 1;
|
|
return;
|
|
}
|
|
uint32_t diff = tg - cur;
|
|
int sign = 1;
|
|
if(cur > tg){
|
|
diff = cur - tg;
|
|
sign = -1;
|
|
}
|
|
if(diff > target_Speed[n]) diff = target_Speed[n];
|
|
*addr[n] = cur + sign*diff;
|
|
}
|
|
|
|
void tim3_isr(){
|
|
/*
|
|
if(TIM3->SR & TIM_SR_CC1IF){ // 1st channel
|
|
chkPWM(0);
|
|
}
|
|
if(TIM3->SR & TIM_SR_CC2IF){ // 2nd channel
|
|
chkPWM(1);
|
|
}
|
|
if(TIM3->SR & TIM_SR_CC4IF){ // 3rd channel
|
|
chkPWM(2);
|
|
}*/
|
|
if(TIM3->SR & TIM_SR_UIF){
|
|
if(!dma_eff){
|
|
chkPWM(0);
|
|
chkPWM(1);
|
|
chkPWM(2);
|
|
}
|
|
}
|
|
TIM3->SR = 0;
|
|
}
|
|
|
|
/*
|
|
void exti0_1_isr(){
|
|
if (EXTI->PR & EXTI_PR_PR1){
|
|
EXTI->PR |= EXTI_PR_PR1; // Clear the pending bit
|
|
;
|
|
}
|
|
}
|
|
*/
|