2024-06-03 20:25:53 +03:00

112 lines
4.1 KiB
C

/*
* This file is part of the fx3u project.
* Copyright 2024 Edward V. Emelianov <edward.emelianoff@gmail.com>.
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "adc.h"
uint16_t ADC_array[ADC_CHANNELS*9];
void adc_setup(){
uint32_t ctr = 0;
// Enable clocking
RCC->APB2ENR |= RCC_APB2ENR_ADC1EN;
RCC->AHBENR |= RCC_AHBENR_DMA1EN;
__DSB();
// DMA configuration
DMA1_Channel1->CPAR = (uint32_t) (&(ADC1->DR));
DMA1_Channel1->CMAR = (uint32_t)(ADC_array);
DMA1_Channel1->CNDTR = ADC_CHANNELS * 9;
DMA1_Channel1->CCR = DMA_CCR_MINC | DMA_CCR_MSIZE_0 | DMA_CCR_PSIZE_0
| DMA_CCR_CIRC | DMA_CCR_PL | DMA_CCR_EN;
RCC->CFGR = (RCC->CFGR & ~(RCC_CFGR_ADCPRE)) | RCC_CFGR_ADCPRE_DIV8; // ADC clock = RCC / 8
// sampling time - 239.5 cycles for channels 0, 16 and 17
ADC1->SMPR2 = ADC_SMPR2_SMP0;
ADC1->SMPR1 = ADC_SMPR1_SMP16 | ADC_SMPR1_SMP17;
// sequence order: 1[0]->3[1]->14[2]->15[3]->10[4]->11[5] -> 16[tsen] -> 17[vdd]
ADC1->SQR3 = (1 << 0) | (3<<5) | (14 << 10) | (15 << 15) | (10 << 20) | (11 < 25);
ADC1->SQR2 = (16 << 0) | (17 << 5);
ADC1->SQR1 = (ADC_CHANNELS - 1) << 20; // amount of conversions
ADC1->CR1 = ADC_CR1_SCAN; // scan mode
// DMA, continuous mode; enable vref & Tsens; enable SWSTART as trigger
ADC1->CR2 = ADC_CR2_DMA | ADC_CR2_TSVREFE | ADC_CR2_CONT | ADC_CR2_EXTSEL | ADC_CR2_EXTTRIG;
// wake up ADC
ADC1->CR2 |= ADC_CR2_ADON;
__DSB();
// wait for Tstab - at least 1us
while(++ctr < 0xff) nop();
// calibration
ADC1->CR2 |= ADC_CR2_RSTCAL;
ctr = 0; while((ADC1->CR2 & ADC_CR2_RSTCAL) && ++ctr < 0xfffff);
ADC1->CR2 |= ADC_CR2_CAL;
ctr = 0; while((ADC1->CR2 & ADC_CR2_CAL) && ++ctr < 0xfffff);
// clear possible errors and start
ADC1->SR = 0;
ADC1->CR2 |= ADC_CR2_SWSTART;
}
/**
* @brief getADCval - calculate median value for `nch` channel
* @param nch - number of channel
* @return
*/
uint16_t getADCval(int nch){
int i, addr = nch;
#define PIX_SORT(a,b) { if ((a)>(b)) PIX_SWAP((a),(b)); }
#define PIX_SWAP(a,b) { register uint16_t temp=(a);(a)=(b);(b)=temp; }
uint16_t p[9];
for(i = 0; i < 9; ++i, addr += ADC_CHANNELS){ // first we should prepare array for optmed
p[i] = ADC_array[addr];
}
PIX_SORT(p[1], p[2]) ; PIX_SORT(p[4], p[5]) ; PIX_SORT(p[7], p[8]) ;
PIX_SORT(p[0], p[1]) ; PIX_SORT(p[3], p[4]) ; PIX_SORT(p[6], p[7]) ;
PIX_SORT(p[1], p[2]) ; PIX_SORT(p[4], p[5]) ; PIX_SORT(p[7], p[8]) ;
PIX_SORT(p[0], p[3]) ; PIX_SORT(p[5], p[8]) ; PIX_SORT(p[4], p[7]) ;
PIX_SORT(p[3], p[6]) ; PIX_SORT(p[1], p[4]) ; PIX_SORT(p[2], p[5]) ;
PIX_SORT(p[4], p[7]) ; PIX_SORT(p[4], p[2]) ; PIX_SORT(p[6], p[4]) ;
PIX_SORT(p[4], p[2]) ;
return p[4];
#undef PIX_SORT
#undef PIX_SWAP
}
// get voltage @input nch (1/100V)
uint32_t getADCvoltage(int nch){
uint32_t v = getADCval(nch);
v *= getVdd();
v /= 0xfff; // 12bit ADC
return v;
}
// return MCU temperature (degrees of celsius * 10)
int32_t getMCUtemp(){
// Temp = (V25 - Vsense)/Avg_Slope + 25
// V_25 = 1.45V, Slope = 4.3e-3
int32_t Vsense = getVdd() * getADCval(ADC_CH_TSEN);
int32_t temperature = 593920 - Vsense; // 593920 == 145*4096
temperature /= 172; // == /(4096*10*4.3e-3), 10 - to convert from *100 to *10
temperature += 250;
return(temperature);
}
// return Vdd * 100 (V)
uint32_t getVdd(){
uint32_t vdd = 120 * 4096; // 1.2V
vdd /= getADCval(ADC_CH_VDD);
return vdd;
}