2022-03-10 11:04:14 +03:00

141 lines
5.1 KiB
C

/*
* adc.c - functions for Sharp 2Y0A02 distance meter & photosensor
*
* Copyright 2015 Edward V. Emelianov <eddy@sao.ru, edward.emelianoff@gmail.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
* MA 02110-1301, USA.
*/
#include "adc.h"
#include "main.h"
uint16_t ADC_value[ADC_CHANNEL_NUMBER]; // Values of ADC
uint16_t ADC_trig_val[ADC_CHANNEL_NUMBER]; // -//- at trigger time
void init_adc_sensor(){
// we will use ADC1 channel 0 for IR sensor & ADC1 channel 1 for laser's photoresistor
uint8_t adc_channel_array[ADC_CHANNEL_NUMBER] = {0,1};
// Make sure the ADC doesn't run during config
adc_off(ADC1);
// enable ADC & PA0/PA1 clocking
rcc_peripheral_enable_clock(&RCC_APB2ENR, RCC_APB2ENR_ADC1EN | RCC_APB2ENR_IOPAEN);
rcc_set_adcpre(RCC_CFGR_ADCPRE_PCLK2_DIV4);
gpio_set_mode(GPIOA, GPIO_MODE_INPUT, GPIO_CNF_INPUT_ANALOG, GPIO0 | GPIO1);
rcc_periph_clock_enable(RCC_DMA1); // enable DMA for ADC values storing
// Configure ADC as continuous scan mode with DMA
ADC1_CR1 = ADC_CR1_SCAN; // enable scan mode
// set sample time on channels 1&2: 239.5 cycles for better results
ADC1_SMPR2 = 0x3f;
dma_channel_reset(DMA1, DMA_CHANNEL1);
DMA1_CPAR1 = (uint32_t) &(ADC_DR(ADC1));
DMA1_CMAR1 = (uint32_t) ADC_value;
DMA1_CNDTR1 = ADC_CHANNEL_NUMBER;
DMA1_CCR1 = DMA_CCR_MINC | DMA_CCR_PSIZE_16BIT | DMA_CCR_MSIZE_16BIT
| DMA_CCR_CIRC | DMA_CCR_PL_HIGH | DMA_CCR_EN;
// continuous conv, enable ADC & DMA
ADC1_CR2 = ADC_CR2_CONT | ADC_CR2_ADON | ADC_CR2_DMA;
// set channels
adc_set_regular_sequence(ADC1, ADC_CHANNEL_NUMBER, adc_channel_array);
// reset calibration registers & start calibration
ADC1_CR2 |= ADC_CR2_RSTCAL;
while(ADC1_CR2 & ADC_CR2_RSTCAL); // wait for registers reset
ADC1_CR2 |= ADC_CR2_CAL;
while(ADC1_CR2 & ADC_CR2_CAL); // wait for calibration ends
// set threshold limits
// ADC1_HTR = ADC_WDG_HIGH;
// ADC1_LTR = ADC_WDG_LOW;
// enable analog watchdog on single regular channel 0 & enable interrupt
//ADC1_CR1 = ADC_CR1_AWDEN | ADC_CR1_AWDSGL | ADC_CR1_AWDIE;
// enable analog watchdog on all regular channels & enable interrupt
// ADC1_CR1 |= ADC_CR1_AWDEN | ADC_CR1_AWDIE;
nvic_enable_irq(NVIC_ADC1_2_IRQ);
ADC1_CR2 |= ADC_CR2_SWSTART;
// turn on ADC - to do it we need set ADC_CR2_ADON again!
ADC1_CR2 |= ADC_CR2_ADON;
}
adwd_stat adc_status[ADC_CHANNEL_NUMBER] = {ADWD_MID, ADWD_MID};
/**
* watchdog works on both channels, so we need to save status of WD events
* to prevent repeated events on constant signal level
*
void adc1_2_isr(){
int i;
if(ADC1_SR & ADC_SR_AWD){ // analog watchdog event
for(i = 0; i < ADC_CHANNEL_NUMBER; ++i){
uint16_t val = ADC_value[i];
adwd_stat st = adc_status[i];
// if(adc_ms[i] == DIDNT_TRIGGERED){
if(val > ADC_WDG_HIGH){ // watchdog event on high level
if(st != ADWD_HI){
adc_ms[i] = Timer;
memcpy(&adc_time, &current_time, sizeof(curtime));
adc_status[i] = ADWD_HI;
ADC_trig_val[i] = val;
}
}else if(val < ADC_WDG_LOW){ // watchdog event on low level
if(st != ADWD_LOW){
adc_ms[i] = Timer;
memcpy(&adc_time, &current_time, sizeof(curtime));
adc_status[i] = ADWD_LOW;
ADC_trig_val[i] = val;
}
}else if(val > ADC_WDG_LOW+ADC_WDG_THRES && val < ADC_WDG_HIGH-ADC_WDG_THRES){
adc_status[i] = ADWD_MID;
if(adc_ms[i] == Timer) // remove noice
adc_ms[i] = DIDNT_TRIGGERED;
}
// }
}
}
ADC1_SR = 0;
}
*/
// levels for thresholding
const uint16_t ADC_lowlevel[2] = {900, 2700}; // signal if ADC value < lowlevel
const uint16_t ADC_highlevel[2] = {2200, 5000}; // signal if ADC value > highlevel
const uint16_t ADC_midlevel[2] = {1400, 3000}; // when transit through midlevel set status as ADWD_MID
void poll_ADC(){
int i;
for(i = 0; i < ADC_CHANNEL_NUMBER; ++i){
uint16_t val = ADC_value[i];
adwd_stat st = adc_status[i];
if(val > ADC_highlevel[i]){ // watchdog event on high level
if(st != ADWD_HI){
adc_ms[i] = Timer;
memcpy(&adc_time[i], &current_time, sizeof(curtime));
adc_status[i] = ADWD_HI;
ADC_trig_val[i] = val;
}
}else if(val < ADC_lowlevel[i]){ // watchdog event on low level
if(st != ADWD_LOW){
adc_ms[i] = Timer;
memcpy(&adc_time[i], &current_time, sizeof(curtime));
adc_status[i] = ADWD_LOW;
ADC_trig_val[i] = val;
}
}else if((st == ADWD_HI && val < ADC_midlevel[i]) ||
(st == ADWD_LOW && val > ADC_midlevel[i])){
adc_status[i] = ADWD_MID;
if(adc_ms[i] == Timer) // remove noice
adc_ms[i] = DIDNT_TRIGGERED;
}
}
}