mirror of
https://github.com/eddyem/stm32samples.git
synced 2025-12-06 10:45:11 +03:00
123 lines
4.2 KiB
C
123 lines
4.2 KiB
C
/*
|
|
* This file is part of the shutter project.
|
|
* Copyright 2023 Edward V. Emelianov <edward.emelianoff@gmail.com>.
|
|
*
|
|
* This program is free software: you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation, either version 3 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#include "adc.h"
|
|
#ifdef EBUG
|
|
#include "usb.h"
|
|
#include "proto.h"
|
|
#endif
|
|
|
|
uint16_t ADC_array[NUMBER_OF_ADC_CHANNELS*9];
|
|
|
|
void adc_setup(){
|
|
uint32_t ctr = 0;
|
|
// Enable clocking
|
|
RCC->APB2ENR |= RCC_APB2ENR_ADC1EN;
|
|
RCC->AHBENR |= RCC_AHBENR_DMA1EN;
|
|
__DSB();
|
|
// DMA configuration
|
|
DMA1_Channel1->CPAR = (uint32_t) (&(ADC1->DR));
|
|
DMA1_Channel1->CMAR = (uint32_t)(ADC_array);
|
|
DMA1_Channel1->CNDTR = NUMBER_OF_ADC_CHANNELS * 9;
|
|
DMA1_Channel1->CCR = DMA_CCR_MINC | DMA_CCR_MSIZE_0 | DMA_CCR_PSIZE_0
|
|
| DMA_CCR_CIRC | DMA_CCR_PL | DMA_CCR_EN;
|
|
RCC->CFGR = (RCC->CFGR & ~(RCC_CFGR_ADCPRE)) | RCC_CFGR_ADCPRE_DIV8; // ADC clock = RCC / 8
|
|
// sampling time - 239.5 cycles for channels 3, 16 and 17
|
|
ADC1->SMPR2 = ADC_SMPR2_SMP3;
|
|
ADC1->SMPR1 = ADC_SMPR1_SMP16 | ADC_SMPR1_SMP17;
|
|
// sequence order: 3 -> 16 -> 17
|
|
ADC1->SQR3 = (3 << 0) | (16<<5) | (17 << 10);
|
|
ADC1->SQR1 = (NUMBER_OF_ADC_CHANNELS - 1) << 20; // amount of conversions
|
|
ADC1->CR1 = ADC_CR1_SCAN; // scan mode
|
|
// DMA, continuous mode; enable vref & Tsens; enable SWSTART as trigger
|
|
ADC1->CR2 = ADC_CR2_DMA | ADC_CR2_TSVREFE | ADC_CR2_CONT | ADC_CR2_EXTSEL | ADC_CR2_EXTTRIG;
|
|
// wake up ADC
|
|
ADC1->CR2 |= ADC_CR2_ADON;
|
|
__DSB();
|
|
// wait for Tstab - at least 1us
|
|
while(++ctr < 0xff) nop();
|
|
// calibration
|
|
ADC1->CR2 |= ADC_CR2_RSTCAL;
|
|
ctr = 0; while((ADC1->CR2 & ADC_CR2_RSTCAL) && ++ctr < 0xfffff);
|
|
ADC1->CR2 |= ADC_CR2_CAL;
|
|
ctr = 0; while((ADC1->CR2 & ADC_CR2_CAL) && ++ctr < 0xfffff);
|
|
// clear possible errors and start
|
|
ADC1->SR = 0;
|
|
ADC1->CR2 |= ADC_CR2_SWSTART;
|
|
}
|
|
|
|
|
|
/**
|
|
* @brief getADCval - calculate median value for `nch` channel
|
|
* @param nch - number of channel
|
|
* @return
|
|
*/
|
|
uint16_t getADCval(int nch){
|
|
int i, addr = nch;
|
|
register uint16_t temp;
|
|
#define PIX_SORT(a,b) { if ((a)>(b)) PIX_SWAP((a),(b)); }
|
|
#define PIX_SWAP(a,b) { temp=(a);(a)=(b);(b)=temp; }
|
|
uint16_t p[9];
|
|
for(i = 0; i < 9; ++i, addr += NUMBER_OF_ADC_CHANNELS){ // first we should prepare array for optmed
|
|
p[i] = ADC_array[addr];
|
|
/*
|
|
#ifdef EBUG
|
|
USB_sendstr("ADC"); USB_putbyte('0'+i);
|
|
USB_putbyte('='); USB_sendstr(u2str(p[i]));
|
|
newline();
|
|
#endif
|
|
*/
|
|
}
|
|
PIX_SORT(p[1], p[2]) ; PIX_SORT(p[4], p[5]) ; PIX_SORT(p[7], p[8]) ;
|
|
PIX_SORT(p[0], p[1]) ; PIX_SORT(p[3], p[4]) ; PIX_SORT(p[6], p[7]) ;
|
|
PIX_SORT(p[1], p[2]) ; PIX_SORT(p[4], p[5]) ; PIX_SORT(p[7], p[8]) ;
|
|
PIX_SORT(p[0], p[3]) ; PIX_SORT(p[5], p[8]) ; PIX_SORT(p[4], p[7]) ;
|
|
PIX_SORT(p[3], p[6]) ; PIX_SORT(p[1], p[4]) ; PIX_SORT(p[2], p[5]) ;
|
|
PIX_SORT(p[4], p[7]) ; PIX_SORT(p[4], p[2]) ; PIX_SORT(p[6], p[4]) ;
|
|
PIX_SORT(p[4], p[2]) ;
|
|
return p[4];
|
|
#undef PIX_SORT
|
|
#undef PIX_SWAP
|
|
}
|
|
|
|
// get voltage @input nch (1/100V)
|
|
uint32_t getADCvoltage(int nch){
|
|
uint32_t v = getADCval(nch);
|
|
v *= getVdd();
|
|
v /= 0xfff; // 12bit ADC
|
|
return v;
|
|
}
|
|
|
|
// return MCU temperature (degrees of celsius * 10)
|
|
int32_t getMCUtemp(){
|
|
// Temp = (V25 - Vsense)/Avg_Slope + 25
|
|
// V_25 = 1.45V, Slope = 4.3e-3
|
|
int32_t Vsense = getVdd() * getADCval(CHTSENS);
|
|
int32_t temperature = 593920 - Vsense; // 593920 == 145*4096
|
|
temperature /= 172; // == /(4096*10*4.3e-3), 10 - to convert from *100 to *10
|
|
temperature += 250;
|
|
return(temperature);
|
|
}
|
|
|
|
// return Vdd * 100 (V)
|
|
uint32_t getVdd(){
|
|
uint32_t vdd = 120 * 4096; // 1.2V
|
|
vdd /= getADCval(CHVREF);
|
|
return vdd;
|
|
}
|