mirror of
https://github.com/eddyem/stm32samples.git
synced 2025-12-06 18:55:13 +03:00
220 lines
8.8 KiB
C
220 lines
8.8 KiB
C
/*
|
|
* geany_encoding=koi8-r
|
|
* hardware.c - hardware-dependent macros & functions
|
|
*
|
|
* Copyright 2018 Edward V. Emelianov <eddy@sao.ru, edward.emelianoff@gmail.com>
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
|
|
* MA 02110-1301, USA.
|
|
*
|
|
*/
|
|
|
|
#include "adc.h"
|
|
#include "hardware.h"
|
|
#include "proto.h"
|
|
#include "spi.h"
|
|
#include "usart.h"
|
|
#include "usb.h"
|
|
|
|
void iwdg_setup(){
|
|
uint32_t tmout = 16000000;
|
|
/* Enable the peripheral clock RTC */
|
|
/* (1) Enable the LSI (40kHz) */
|
|
/* (2) Wait while it is not ready */
|
|
RCC->CSR |= RCC_CSR_LSION; /* (1) */
|
|
while((RCC->CSR & RCC_CSR_LSIRDY) != RCC_CSR_LSIRDY){if(--tmout == 0) break;} /* (2) */
|
|
/* Configure IWDG */
|
|
/* (1) Activate IWDG (not needed if done in option bytes) */
|
|
/* (2) Enable write access to IWDG registers */
|
|
/* (3) Set prescaler by 64 (1.6ms for each tick) */
|
|
/* (4) Set reload value to have a rollover each 2s */
|
|
/* (5) Check if flags are reset */
|
|
/* (6) Refresh counter */
|
|
IWDG->KR = IWDG_START; /* (1) */
|
|
IWDG->KR = IWDG_WRITE_ACCESS; /* (2) */
|
|
IWDG->PR = IWDG_PR_PR_1; /* (3) */
|
|
IWDG->RLR = 1250; /* (4) */
|
|
tmout = 16000000;
|
|
while(IWDG->SR){if(--tmout == 0) break;} /* (5) */
|
|
IWDG->KR = IWDG_REFRESH; /* (6) */
|
|
}
|
|
|
|
static inline void gpio_setup(){
|
|
// here we turn on clocking for all periph.
|
|
RCC->AHBENR |= RCC_AHBENR_GPIOAEN | RCC_AHBENR_GPIOBEN | RCC_AHBENR_DMAEN;
|
|
// Set LEDS (PA6-8, PB0/1) as Out & AF (PWM); PA0,1,5 - AIN, PA4 - DAC
|
|
GPIOA->MODER = GPIO_MODER_MODER0_AI | GPIO_MODER_MODER1_AI | GPIO_MODER_MODER4_AI |
|
|
GPIO_MODER_MODER5_AI | GPIO_MODER_MODER6_AF | GPIO_MODER_MODER7_AF | GPIO_MODER_MODER8_AF;
|
|
GPIOB->MODER = GPIO_MODER_MODER0_AF | GPIO_MODER_MODER1_AF;
|
|
// alternate functions: PA6-8: TIM3CH1,2 and TIM1_CH1 (AF1, AF1, AF2)
|
|
// PB0-1: TIM3CH3,4 (AF1, AF1),
|
|
GPIOA->AFR[0] = (1 << (6 * 4)) | (1 << (7 * 4));
|
|
GPIOA->AFR[1] = (2 << (0 * 4));
|
|
GPIOB->AFR[0] = (1 << (0 * 4)) | (1 << (1 * 4));
|
|
}
|
|
|
|
// Setup ADC and DAC
|
|
static inline void adc_setup(){
|
|
uint16_t ctr = 0; // 0xfff0 - more than 1.3ms
|
|
// Enable clocking
|
|
/* (1) Enable the peripheral clock of the ADC */
|
|
/* (2) Start HSI14 RC oscillator */
|
|
/* (3) Wait HSI14 is ready */
|
|
RCC->APB2ENR |= RCC_APB2ENR_ADC1EN; /* (1) */
|
|
RCC->CR2 |= RCC_CR2_HSI14ON; /* (2) */
|
|
while ((RCC->CR2 & RCC_CR2_HSI14RDY) == 0 && ++ctr < 0xfff0){}; /* (3) */
|
|
// calibration
|
|
/* (1) Ensure that ADEN = 0 */
|
|
/* (2) Clear ADEN */
|
|
/* (3) Launch the calibration by setting ADCAL */
|
|
/* (4) Wait until ADCAL=0 */
|
|
if ((ADC1->CR & ADC_CR_ADEN) != 0){ /* (1) */
|
|
ADC1->CR &= (uint32_t)(~ADC_CR_ADEN); /* (2) */
|
|
}
|
|
ADC1->CR |= ADC_CR_ADCAL; /* (3) */
|
|
ctr = 0; // ADC calibration time is 5.9us
|
|
while ((ADC1->CR & ADC_CR_ADCAL) != 0 && ++ctr < 0xfff0){}; /* (4) */
|
|
// enable ADC
|
|
ctr = 0;
|
|
do{
|
|
ADC1->CR |= ADC_CR_ADEN;
|
|
}while ((ADC1->ISR & ADC_ISR_ADRDY) == 0 && ++ctr < 0xfff0);
|
|
// configure ADC to generate a triangle wave on DAC1_OUT synchronized by TIM6 HW trigger
|
|
/* (1) Select HSI14 by writing 00 in CKMODE (reset value) */
|
|
/* (2) Select the continuous mode */
|
|
/* (3) Select CHSEL0,1,5 - ADC inputs, 16,17 - t. sensor and vref */
|
|
/* (4) Select a sampling mode of 111 i.e. 239.5 ADC clk to be greater than 17.1us */
|
|
/* (5) Wake-up the VREFINT and Temperature sensor (only for VBAT, Temp sensor and VRefInt) */
|
|
// ADC1->CFGR2 &= ~ADC_CFGR2_CKMODE; /* (1) */
|
|
ADC1->CFGR1 |= ADC_CFGR1_CONT; /* (2)*/
|
|
ADC1->CHSELR = ADC_CHSELR_CHSEL0 | ADC_CHSELR_CHSEL1 | ADC_CHSELR_CHSEL5 | ADC_CHSELR_CHSEL16 | ADC_CHSELR_CHSEL17; /* (3)*/
|
|
ADC1->SMPR |= ADC_SMPR_SMP_0 | ADC_SMPR_SMP_1 | ADC_SMPR_SMP_2; /* (4) */
|
|
ADC->CCR |= ADC_CCR_TSEN | ADC_CCR_VREFEN; /* (5) */
|
|
// configure DMA for ADC
|
|
// DMA for AIN
|
|
/* (1) Enable the peripheral clock on DMA */
|
|
/* (2) Enable DMA transfer on ADC and circular mode */
|
|
/* (3) Configure the peripheral data register address */
|
|
/* (4) Configure the memory address */
|
|
/* (5) Configure the number of DMA tranfer to be performs on DMA channel 1 */
|
|
/* (6) Configure increment, size, interrupts and circular mode */
|
|
/* (7) Enable DMA Channel 1 */
|
|
RCC->AHBENR |= RCC_AHBENR_DMA1EN; /* (1) */
|
|
ADC1->CFGR1 |= ADC_CFGR1_DMAEN | ADC_CFGR1_DMACFG; /* (2) */
|
|
DMA1_Channel1->CPAR = (uint32_t) (&(ADC1->DR)); /* (3) */
|
|
DMA1_Channel1->CMAR = (uint32_t)(ADC_array); /* (4) */
|
|
DMA1_Channel1->CNDTR = NUMBER_OF_ADC_CHANNELS * 9; /* (5) */
|
|
DMA1_Channel1->CCR |= DMA_CCR_MINC | DMA_CCR_MSIZE_0 | DMA_CCR_PSIZE_0 | DMA_CCR_CIRC; /* (6) */
|
|
DMA1_Channel1->CCR |= DMA_CCR_EN; /* (7) */
|
|
ADC1->CR |= ADC_CR_ADSTART; /* start the ADC conversions */
|
|
// DAC
|
|
/* (1) Enable the peripheral clock of the DAC */
|
|
/* (2) Configure WAVEx at 10,
|
|
Configure mask amplitude for ch1 (MAMP1) at 1011 for a 4095-bits amplitude
|
|
enable the DAC ch1, disable buffer on ch1,
|
|
and select TIM6 as trigger by keeping 000 in TSEL1 */
|
|
RCC->APB1ENR |= RCC_APB1ENR_DACEN; /* (1) */
|
|
DAC->CR |= DAC_CR_WAVE1_1
|
|
| DAC_CR_MAMP1_3 | DAC_CR_MAMP1_1 | DAC_CR_MAMP1_0
|
|
| DAC_CR_BOFF1 | DAC_CR_TEN1 | DAC_CR_EN1; /* (2) */
|
|
// configure the Timer 6 to generate an external trigger on TRGO each microsecond
|
|
/* (1) Enable the peripheral clock of the TIM6 */
|
|
/* (2) Configure MMS=010 to output a rising edge at each update event */
|
|
/* (3) Select PCLK/2 i.e. 48MHz/2=24MHz */
|
|
/* (4) Set one update event each 1 microsecond */
|
|
/* (5) Enable TIM6 */
|
|
RCC->APB1ENR |= RCC_APB1ENR_TIM6EN; /* (1) */
|
|
TIM6->CR2 |= TIM_CR2_MMS_1; /* (2) */
|
|
TIM6->PSC = 1; /* (3) */
|
|
TIM6->ARR = (uint16_t)24; /* (4) */
|
|
TIM6->CR1 |= TIM_CR1_CEN; /* (5) */
|
|
}
|
|
|
|
static inline void pwm_setup(){
|
|
// enable clocking for tim1 & tim3
|
|
RCC->APB1ENR |= RCC_APB1ENR_TIM3EN;
|
|
RCC->APB2ENR |= RCC_APB2ENR_TIM1EN;
|
|
// PWM mode 2
|
|
TIM1->CCMR1 = TIM_CCMR1_OC1M_2 | TIM_CCMR1_OC1M_1 | TIM_CCMR1_OC1M_0;
|
|
TIM3->CCMR1 = TIM_CCMR1_OC1M_2 | TIM_CCMR1_OC1M_1 | TIM_CCMR1_OC1M_0 |
|
|
TIM_CCMR1_OC2M_2 | TIM_CCMR1_OC2M_1 | TIM_CCMR1_OC2M_0;
|
|
TIM3->CCMR2 = TIM_CCMR2_OC3M_2 | TIM_CCMR2_OC3M_1 | TIM_CCMR2_OC3M_0 |
|
|
TIM_CCMR2_OC4M_2 | TIM_CCMR2_OC4M_1 | TIM_CCMR2_OC4M_0;
|
|
// frequency - 8MHz for 31kHz PWM
|
|
TIM1->PSC = 5;
|
|
TIM3->PSC = 5;
|
|
// ARR for 8-bit PWM
|
|
TIM1->ARR = 254;
|
|
TIM3->ARR = 254;
|
|
TIM1->CCR1 = 127;
|
|
TIM3->CCR1 = 63; TIM3->CCR2 = 127; TIM3->CCR3 = 191; TIM3->CCR4 = 250;
|
|
// enable main output
|
|
TIM1->BDTR |= TIM_BDTR_MOE;
|
|
TIM3->BDTR |= TIM_BDTR_MOE;
|
|
// enable PWM outputs
|
|
TIM1->CCER = TIM_CCER_CC1E;
|
|
TIM3->CCER = TIM_CCER_CC1E | TIM_CCER_CC2E | TIM_CCER_CC3E | TIM_CCER_CC4E;
|
|
// start timers
|
|
TIM1->CR1 |= TIM_CR1_CEN;
|
|
TIM3->CR1 |= TIM_CR1_CEN;
|
|
}
|
|
|
|
void hw_setup(){
|
|
gpio_setup();
|
|
adc_setup();
|
|
pwm_setup();
|
|
}
|
|
|
|
// USART & SPI both use common DMA interrupts, so put them together here
|
|
// SPI Rx use the same DMA channels as USART Tx, so they can't work together!
|
|
// USART1 Tx (channel 2) & SPI1 Tx (channel 3)
|
|
void dma1_channel2_3_isr(){
|
|
if(DMA1->ISR & DMA_ISR_TCIF2){ // Tx
|
|
DMA1->IFCR |= DMA_IFCR_CTCIF2; // clear TC flag
|
|
txrdy[0] = 1;
|
|
}
|
|
if(DMA1->ISR & DMA_ISR_TCIF3){ // transfer done
|
|
DMA1->IFCR |= DMA_IFCR_CTCIF3;
|
|
SPI_status[0] = SPI_READY;
|
|
USND("SPI1 tx done\n");
|
|
}
|
|
if(DMA1->ISR & DMA_ISR_TEIF2){ // receiver overflow
|
|
DMA1->IFCR |= DMA_IFCR_CTEIF2;
|
|
SPIoverfl[0] = 1;
|
|
}
|
|
}
|
|
// USART2 + USART3 Tx (channels 4 and 7) & SPI2 Tx (channel 5)
|
|
void dma1_channel4_5_isr(){
|
|
if(DMA1->ISR & DMA_ISR_TCIF4){ // Tx
|
|
DMA1->IFCR |= DMA_IFCR_CTCIF4; // clear TC flag
|
|
txrdy[1] = 1;
|
|
}
|
|
if(DMA1->ISR & DMA_ISR_TEIF4){
|
|
DMA1->IFCR |= DMA_IFCR_CTEIF4;
|
|
SPIoverfl[1] = 1;
|
|
}
|
|
if(DMA1->ISR & DMA_ISR_TCIF5){
|
|
DMA1->IFCR |= DMA_IFCR_CTCIF5;
|
|
SPI_status[1] = SPI_READY;
|
|
USND("SPI2 tx done\n");
|
|
}
|
|
#ifdef USART3
|
|
if(DMA1->ISR & DMA_ISR_TCIF7){ // Tx
|
|
DMA1->IFCR |= DMA_IFCR_CTCIF7; // clear TC flag
|
|
txrdy[2] = 1;
|
|
}
|
|
#endif
|
|
}
|