390 lines
13 KiB
C

/*
* This file is part of the fx3u project.
* Copyright 2024 Edward V. Emelianov <edward.emelianoff@gmail.com>.
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "can.h"
#include "canproto.h"
#include "flash.h" // CANID
#include "hardware.h"
#include "proto.h"
#include "strfunc.h"
#include "usart.h"
// REMAPPED to PD0/PD1!!!
#include <string.h> // memcpy
// CAN bus oscillator frequency: 36MHz
#define CAN_F_OSC (36000000UL)
// timing values TBS1 and TBS2 (in BTR [TBS1-1] and [TBS2-1])
// use 3 and 2 to get 6MHz
#define CAN_TBS1 (3)
#define CAN_TBS2 (2)
// bitrate oscillator frequency
#define CAN_BIT_OSC (CAN_F_OSC / (1+CAN_TBS1+CAN_TBS2))
// circular buffer for received messages
static CAN_message messages[CAN_INMESSAGE_SIZE];
static uint8_t first_free_idx = 0; // index of first empty cell
static int8_t first_nonfree_idx = -1; // index of first data cell
static uint32_t oldspeed = 100000; // speed of last init
static CAN_status can_status = CAN_STOP;
static void can_process_fifo(uint8_t fifo_num);
CAN_status CAN_get_status(){
int st = can_status;
can_status = CAN_OK;
return st;
}
// push next message into buffer; return 1 if buffer overfull
static int CAN_messagebuf_push(CAN_message *msg){
//MSG("Try to push\n");
/*
#ifdef EBUG
usart_send("push\n");
#endif
*/
if(first_free_idx == first_nonfree_idx){
#ifdef EBUG
usart_send("INBUF OVERFULL\n");
#endif
return 1; // no free space
}
if(first_nonfree_idx < 0) first_nonfree_idx = 0; // first message in empty buffer
memcpy(&messages[first_free_idx++], msg, sizeof(CAN_message));
// need to roll?
if(first_free_idx == CAN_INMESSAGE_SIZE) first_free_idx = 0;
return 0;
}
// pop message from buffer
CAN_message *CAN_messagebuf_pop(){
if(first_nonfree_idx < 0) return NULL;
CAN_message *msg = &messages[first_nonfree_idx++];
if(first_nonfree_idx == CAN_INMESSAGE_SIZE) first_nonfree_idx = 0;
if(first_nonfree_idx == first_free_idx){ // buffer is empty - refresh it
first_nonfree_idx = -1;
first_free_idx = 0;
}
return msg;
}
void CAN_reinit(uint32_t speed){
CAN1->TSR |= CAN_TSR_ABRQ0 | CAN_TSR_ABRQ1 | CAN_TSR_ABRQ2;
RCC->APB1RSTR |= RCC_APB1RSTR_CAN1RST;
RCC->APB1RSTR &= ~RCC_APB1RSTR_CAN1RST;
CAN_setup(speed);
}
/*
Can filtering: FSCx=0 (CAN1->FS1R) -> 16-bit identifiers
MASK: FBMx=0 (CAN1->FM1R), two filters (n in FR1 and n+1 in FR2)
ID: CAN1->sFilterRegister[x].FRn[0..15]
MASK: CAN1->sFilterRegister[x].FRn[16..31]
FR bits: STID[10:0] RTR IDE EXID[17:15]
LIST: FBMx=1, four filters (n&n+1 in FR1, n+2&n+3 in FR2)
IDn: CAN1->sFilterRegister[x].FRn[0..15]
IDn+1: CAN1->sFilterRegister[x].FRn[16..31]
*/
/*
Can timing: main freq - APB (PLL=48MHz)
segment = 1sync + TBS1 + TBS2, sample point is between TBS1 and TBS2,
so if TBS1=4 and TBS2=3, sum=8, bit sampling freq is 48/8 = 6MHz
-> to get 100kbps we need prescaler=60
250kbps - 24
500kbps - 12
1MBps - 6
*/
// speed - in bps
void CAN_setup(uint32_t speed){
if(speed == 0) speed = oldspeed;
else if(speed < CAN_MIN_SPEED) speed = CAN_MIN_SPEED;
else if(speed > CAN_MAX_SPEED) speed = CAN_MAX_SPEED;
uint32_t tmout = 16000000;
// Configure GPIO: PD0 - CAN_Rx, PD1 - CAN_Tx
AFIO->MAPR |= AFIO_MAPR_CAN_REMAP_REMAP3;
GPIOD->CRL = (GPIOD->CRL & ~(CRL(0,0xf)|CRL(1,0xf))) |
CRL(0, CNF_FLINPUT | MODE_INPUT) | CRL(1, CNF_AFPP | MODE_NORMAL);
/* Enable the peripheral clock CAN */
RCC->APB1ENR |= RCC_APB1ENR_CAN1EN;
/* Configure CAN */
/* (1) Enter CAN init mode to write the configuration */
/* (2) Wait the init mode entering */
/* (3) Exit sleep mode */
/* (4) Normal mode, set timing to 100kb/s: TBS1 = 4, TBS2 = 3, prescaler = 60 */
/* (5) Leave init mode */
/* (6) Wait the init mode leaving */
/* (7) Enter filter init mode, (16-bit + mask, bank 0 for FIFO 0) */
/* (8) Acivate filter 0 for two IDs */
/* (9) Identifier mode for bank#0, mask mode for #1 */
/* (10) Set the Id list */
/* (12) Leave filter init */
/* (13) Set error interrupts enable (& bus off) */
CAN1->MCR |= CAN_MCR_INRQ; /* (1) */
while((CAN1->MSR & CAN_MSR_INAK) != CAN_MSR_INAK) /* (2) */
if(--tmout == 0) break;
CAN1->MCR &=~ CAN_MCR_SLEEP; /* (3) */
CAN1->MCR |= CAN_MCR_ABOM; /* allow automatically bus-off */
CAN1->BTR = (CAN_TBS2-1) << 20 | (CAN_TBS1-1) << 16 | (CAN_BIT_OSC/speed - 1); //| CAN_BTR_SILM | CAN_BTR_LBKM; /* (4) */
oldspeed = CAN_BIT_OSC/(uint32_t)((CAN1->BTR & CAN_BTR_BRP) + 1);
#ifdef EBUG
usart_send("canspeed->"); usart_send(u2str(oldspeed)); newline();
#endif
CAN1->MCR &= ~CAN_MCR_INRQ; /* (5) */
tmout = 16000000;
while((CAN1->MSR & CAN_MSR_INAK) == CAN_MSR_INAK) /* (6) */
if(--tmout == 0) break;
// accept depending of monitor flag
CAN1->FMR = CAN_FMR_FINIT; /* (7) */
CAN1->FA1R = CAN_FA1R_FACT0; /* (8) */
CAN1->FM1R = CAN_FM1R_FBM0;
// filter 0 for FIFO0
CAN1->sFilterRegister[0].FR1 = the_conf.CANIDin << 5; // (10) CANIDin and 0
if(flags.can_monitor){ /* (11) */
CAN1->FA1R |= CAN_FA1R_FACT1; // activate filter1
CAN1->sFilterRegister[1].FR1 = 0; // all packets
CAN1->FFA1R = 2; // filter 1 for FIFO1
}
CAN1->FMR &= ~CAN_FMR_FINIT; /* (12) */
CAN1->IER |= CAN_IER_ERRIE | CAN_IER_FOVIE0 | CAN_IER_FOVIE1 | CAN_IER_BOFIE; /* (13) */
/* Configure IT */
NVIC_SetPriority(USB_LP_CAN1_RX0_IRQn, 0); // RX FIFO0 IRQ
NVIC_SetPriority(CAN1_RX1_IRQn, 0); // RX FIFO1 IRQ
NVIC_SetPriority(CAN1_SCE_IRQn, 0); // RX status changed IRQ
NVIC_EnableIRQ(USB_LP_CAN1_RX0_IRQn);
NVIC_EnableIRQ(CAN1_RX1_IRQn);
NVIC_EnableIRQ(CAN1_SCE_IRQn);
CAN1->MSR = 0; // clear SLAKI, WKUI, ERRI
can_status = CAN_READY;
}
/**
* @brief CAN_sniffer - reconfigure CAN in sniffer or normal mode
* @param issniffer - ==0 for normal mode
*/
void CAN_sniffer(uint8_t issniffer){
flags.can_monitor = issniffer;
CAN_reinit(0);
}
void CAN_printerr(){
uint32_t last_err_code = CAN1->ESR;
if(!last_err_code){
usart_send("No errors\n");
return;
}
usart_send("Receive error counter: ");
usart_send(u2str((last_err_code & CAN_ESR_REC)>>24));
usart_send("\nTransmit error counter: ");
usart_send(u2str((last_err_code & CAN_ESR_TEC)>>16));
usart_send("\nLast error code: ");
int lec = (last_err_code & CAN_ESR_LEC) >> 4;
const char *errmsg = "No";
switch(lec){
case 1: errmsg = "Stuff"; break;
case 2: errmsg = "Form"; break;
case 3: errmsg = "Ack"; break;
case 4: errmsg = "Bit recessive"; break;
case 5: errmsg = "Bit dominant"; break;
case 6: errmsg = "CRC"; break;
case 7: errmsg = "(set by software)"; break;
}
usart_send(errmsg); usart_send(" error\n");
if(last_err_code & CAN_ESR_BOFF) usart_send("Bus off ");
if(last_err_code & CAN_ESR_EPVF) usart_send("Passive error limit ");
if(last_err_code & CAN_ESR_EWGF) usart_send("Error counter limit");
newline();
}
void CAN_proc(){
// check for messages in FIFO0 & FIFO1
if(CAN1->RF0R & CAN_RF0R_FMP0){
can_process_fifo(0);
}
if(CAN1->RF1R & CAN_RF1R_FMP1){
can_process_fifo(1);
}
IWDG->KR = IWDG_REFRESH;
if(CAN1->ESR & (CAN_ESR_BOFF | CAN_ESR_EPVF | CAN_ESR_EWGF)){ // much errors - restart CAN BUS
if(flags.can_printoff){
usart_send("error=canerr\n");
CAN_printerr();
}
CAN_reinit(0);
}
}
CAN_status CAN_send(CAN_message *message){
if(!message) return CAN_ERR;
IWDG->KR = IWDG_REFRESH;
uint8_t *msg = message->data;
uint8_t len = message->length;
uint16_t target_id = message->ID;
uint8_t mailbox = 0xff;
uint32_t Tstart = Tms;
while(Tms - Tstart < SEND_TIMEOUT_MS/10){
IWDG->KR = IWDG_REFRESH;
if(CAN1->TSR & (CAN_TSR_TME)){
mailbox = (CAN1->TSR & CAN_TSR_CODE) >> 24;
break;
}
}
if(mailbox == 0xff){// no free mailboxes
#ifdef EBUG
usart_send("No free mailboxes\n");
#endif
return CAN_BUSY;
}
CAN_TxMailBox_TypeDef *box = &CAN1->sTxMailBox[mailbox];
uint32_t lb = 0, hb = 0;
switch(len){
case 8:
hb |= (uint32_t)msg[7] << 24;
__attribute__((fallthrough));
case 7:
hb |= (uint32_t)msg[6] << 16;
__attribute__((fallthrough));
case 6:
hb |= (uint32_t)msg[5] << 8;
__attribute__((fallthrough));
case 5:
hb |= (uint32_t)msg[4];
__attribute__((fallthrough));
case 4:
lb |= (uint32_t)msg[3] << 24;
__attribute__((fallthrough));
case 3:
lb |= (uint32_t)msg[2] << 16;
__attribute__((fallthrough));
case 2:
lb |= (uint32_t)msg[1] << 8;
__attribute__((fallthrough));
default:
lb |= (uint32_t)msg[0];
}
box->TDLR = lb;
box->TDHR = hb;
box->TDTR = len;
box->TIR = (target_id & 0x7FF) << 21 | CAN_TI0R_TXRQ;
return CAN_OK;
}
/**
* @brief parseCANcommand - parser
* @param msg - incoming message @ my CANID
* FORMAT:
* 0 1 2 3 4 5 6 7
* [CMD][PAR][errcode][VALUE]
* CMD - uint16_t, PAR - uint8_t, errcode - one of CAN_errcodes, VALUE - int32_t
* `errcode` of incoming message doesn't matter
* incoming data may have variable length
*/
TRUE_INLINE void parseCANcommand(CAN_message *msg){
msg->ID = the_conf.CANIDout; // set output ID for all output messages
// check PING
if(msg->length != 0) run_can_cmd(msg);
uint32_t Tstart = Tms;
while(Tms - Tstart < SEND_TIMEOUT_MS){
if(CAN_OK == CAN_send(msg)) return;
IWDG->KR = IWDG_REFRESH;
}
usart_send("error=canbusy\n");
}
static void can_process_fifo(uint8_t fifo_num){
if(fifo_num > 1) return;
CAN_FIFOMailBox_TypeDef *box = &CAN1->sFIFOMailBox[fifo_num];
volatile uint32_t *RFxR = (fifo_num) ? &CAN1->RF1R : &CAN1->RF0R;
// read all
while(*RFxR & CAN_RF0R_FMP0){ // amount of messages pending
// CAN_RDTxR: (16-31) - timestamp, (8-15) - filter match index, (0-3) - data length
/* TODO: check filter match index if more than one ID can receive */
CAN_message msg;
uint8_t *dat = msg.data;
uint8_t len = box->RDTR & 0x0f;
msg.length = len;
msg.ID = box->RIR >> 21;
//msg.filterNo = (box->RDTR >> 8) & 0xff;
//msg.fifoNum = fifo_num;
if(len){ // message can be without data
uint32_t hb = box->RDHR, lb = box->RDLR;
switch(len){
case 8:
dat[7] = hb>>24;
__attribute__((fallthrough));
case 7:
dat[6] = (hb>>16) & 0xff;
__attribute__((fallthrough));
case 6:
dat[5] = (hb>>8) & 0xff;
__attribute__((fallthrough));
case 5:
dat[4] = hb & 0xff;
__attribute__((fallthrough));
case 4:
dat[3] = lb>>24;
__attribute__((fallthrough));
case 3:
dat[2] = (lb>>16) & 0xff;
__attribute__((fallthrough));
case 2:
dat[1] = (lb>>8) & 0xff;
__attribute__((fallthrough));
case 1:
dat[0] = lb & 0xff;
}
}
// run command for my or broadcast ID
if(msg.ID == the_conf.CANIDin || msg.ID == 0) parseCANcommand(&msg);
if(flags.can_monitor && CAN_messagebuf_push(&msg)) return; // error: buffer is full, try later
*RFxR |= CAN_RF0R_RFOM0; // release fifo for access to next message
}
//if(*RFxR & CAN_RF0R_FULL0) *RFxR &= ~CAN_RF0R_FULL0;
*RFxR = 0; // clear FOVR & FULL
}
void usb_lp_can_rx0_isr(){ // Rx FIFO0 (overrun)
if(CAN1->RF0R & CAN_RF0R_FOVR0){ // FIFO overrun
CAN1->RF0R &= ~CAN_RF0R_FOVR0;
can_status = CAN_FIFO_OVERRUN;
}
}
void can_rx1_isr(){ // Rx FIFO1 (overrun)
if(CAN1->RF1R & CAN_RF1R_FOVR1){
CAN1->RF1R &= ~CAN_RF1R_FOVR1;
can_status = CAN_FIFO_OVERRUN;
}
}
void can_sce_isr(){ // status changed
if(CAN1->MSR & CAN_MSR_ERRI){ // Error
CAN1->MSR &= ~CAN_MSR_ERRI;
// request abort for problem mailbox
if(CAN1->TSR & CAN_TSR_TERR0) CAN1->TSR |= CAN_TSR_ABRQ0;
if(CAN1->TSR & CAN_TSR_TERR1) CAN1->TSR |= CAN_TSR_ABRQ1;
if(CAN1->TSR & CAN_TSR_TERR2) CAN1->TSR |= CAN_TSR_ABRQ2;
can_status = CAN_ERR;
}
}