2025-09-24 23:36:46 +03:00

343 lines
14 KiB
C
Raw Permalink Blame History

/*
* This file is part of the mlx90640 project.
* Copyright 2025 Edward V. Emelianov <edward.emelianoff@gmail.com>.
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <math.h>
#include <stdint.h>
#include <string.h>
#include "strfunc.h"
#include "mlx90640.h"
#include "mlx90640_regs.h"
#include "mlxproc.h"
// static const char *OK = "OK\n", *OKs = "OK ", *NOTEQ = "NOT equal!\n", *NOTEQi = "NOT equal on index ";
// tolerance of floating point comparison
#define FP_TOLERANCE (1e-3)
// 3072 bytes
static fp_t mlx_image[MLX_PIXNO] = {0}; // ready image
// 10100 bytes:
static MLX90640_params params; // calculated parameters (in heap, not stack!) for other functions
void dumpIma(const fp_t im[MLX_PIXNO]){
for(int row = 0; row < MLX_H; ++row){
for(int col = 0; col < MLX_W; ++col){
printfl(*im++, 1);
USB_putbyte(' ');
}
newline();
}
}
#define GRAY_LEVELS (16)
// 16-level character set ordered by fill percentage (provided by user)
static const char* CHARS_16 = " .':;+*oxX#&%B$@";
void drawIma(const fp_t im[MLX_PIXNO]){
// Find min and max values
fp_t min_val = im[0], max_val = im[0];
const fp_t *iptr = im;
for(int row = 0; row < MLX_H; ++row){
for(int col = 0; col < MLX_W; ++col){
fp_t cur = *iptr++;
if(cur < min_val) min_val = cur;
else if(cur > max_val) max_val = cur;
}
}
fp_t range = max_val - min_val;
U("RANGE="); USND(float2str(range, 3));
U("MIN="); USND(float2str(min_val, 3));
U("MAX="); USND(float2str(max_val, 3));
if(fabsf(range) < 0.001) range = 1.; // solid fill -> blank
// Generate and print ASCII art
iptr = im;
for(int row = 0; row < MLX_H; ++row){
for(int col = 0; col < MLX_W; ++col){
fp_t normalized = ((*iptr++) - min_val) / range;
// Map to character index (0 to 15)
int index = (int)(normalized * GRAY_LEVELS);
// Ensure we stay within bounds
if(index < 0) index = 0;
else if(index > (GRAY_LEVELS-1)) index = (GRAY_LEVELS-1);
USB_putbyte(CHARS_16[index]);
}
newline();
}
newline();
}
/*****************************************************************************
Calculate parameters & values
*****************************************************************************/
// fill OCC/ACC row/col arrays
static void occacc(int8_t *arr, int l, const uint16_t *regstart){
int n = l >> 2; // divide by 4
int8_t *p = arr;
for(int i = 0; i < n; ++i){
register uint16_t val = *regstart++;
*p++ = (val & 0x000F) >> 0;
*p++ = (val & 0x00F0) >> 4;
*p++ = (val & 0x0F00) >> 8;
*p++ = (val ) >> 12;
}
for(int i = 0; i < l; ++i, ++arr){
if(*arr > 0x07) *arr -= 0x10;
}
}
// get all parameters' values from `dataarray`, return FALSE if something failed
MLX90640_params *get_parameters(const uint16_t dataarray[MLX_DMA_MAXLEN]){
#define CREG_VAL(reg) dataarray[CREG_IDX(reg)]
int8_t i8;
int16_t i16;
uint16_t *pu16;
uint16_t val = CREG_VAL(REG_VDD);
i8 = (int8_t) (val >> 8);
params.kVdd = i8 * 32; // keep sign
if(params.kVdd == 0){USND("kvdd=0"); return NULL;}
i16 = val & 0xFF;
params.vdd25 = ((i16 - 0x100) * 32) - (1<<13);
val = CREG_VAL(REG_KVTPTAT);
i16 = (val & 0xFC00) >> 10;
if(i16 > 0x1F) i16 -= 0x40;
params.KvPTAT = (fp_t)i16 / (1<<12);
i16 = (val & 0x03FF);
if(i16 > 0x1FF) i16 -= 0x400;
params.KtPTAT = (fp_t)i16 / 8.;
params.vPTAT25 = (int16_t) CREG_VAL(REG_PTAT);
val = CREG_VAL(REG_APTATOCCS) >> 12;
params.alphaPTAT = val / 4. + 8.;
params.gainEE = (int16_t)CREG_VAL(REG_GAIN);
if(params.gainEE == 0){USND("gainee=0"); return NULL;}
int8_t occRow[MLX_H];
int8_t occColumn[MLX_W];
occacc(occRow, MLX_H, &CREG_VAL(REG_OCCROW14));
occacc(occColumn, MLX_W, &CREG_VAL(REG_OCCCOL14));
int8_t accRow[MLX_H];
int8_t accColumn[MLX_W];
occacc(accRow, MLX_H, &CREG_VAL(REG_ACCROW14));
occacc(accColumn, MLX_W, &CREG_VAL(REG_ACCCOL14));
val = CREG_VAL(REG_APTATOCCS);
// need to do multiplication instead of bitshift, so:
fp_t occRemScale = 1<<(val&0x0F),
occColumnScale = 1<<((val>>4)&0x0F),
occRowScale = 1<<((val>>8)&0x0F);
int16_t offavg = (int16_t) CREG_VAL(REG_OSAVG);
// even/odd column/row numbers are for starting from 1, so for starting from 0 we should swap them:
// even - for 1,3,5,...; odd - for 0,2,4,... etc
int8_t ktaavg[4];
// 0 - odd row, odd col; 1 - odd row even col; 2 - even row, odd col; 3 - even row, even col
val = CREG_VAL(REG_KTAAVGODDCOL);
ktaavg[2] = (int8_t)(val & 0xFF); // odd col (1,3,..), even row (2,4,..) -> col 0,2,..; row 1,3,..
ktaavg[0] = (int8_t)(val >> 8); // odd col, odd row -> col 0,2,..; row 0,2,..
val = CREG_VAL(REG_KTAAVGEVENCOL);
ktaavg[3] = (int8_t)(val & 0xFF); // even col, even row -> col 1,3,..; row 1,3,..
ktaavg[1] = (int8_t)(val >> 8); // even col, odd row -> col 1,3,..; row 0,2,..
// so index of ktaavg is 2*(row&1)+(col&1)
val = CREG_VAL(REG_KTAVSCALE);
uint8_t scale1 = ((val & 0xFF)>>4) + 8, scale2 = (val&0xF);
if(scale1 == 0 || scale2 == 0){USND("scale1/2=0"); return NULL;}
fp_t mul = (fp_t)(1<<scale2), div = (fp_t)(1<<scale1); // kta_scales
uint16_t a_r = CREG_VAL(REG_SENSIVITY); // alpha_ref
val = CREG_VAL(REG_SCALEACC);
fp_t *a = params.alpha;
uint32_t diva32 = 1 << (val >> 12);
fp_t diva = (fp_t)(diva32);
diva *= (fp_t)(1<<30); // alpha_scale
fp_t accRowScale = 1<<((val & 0x0f00)>>8),
accColumnScale = 1<<((val & 0x00f0)>>4),
accRemScale = 1<<(val & 0x0f);
pu16 = (uint16_t*)&CREG_VAL(REG_OFFAK1);
fp_t *kta = params.kta, *offset = params.offset;
uint8_t *ol = params.outliers;
for(int row = 0; row < MLX_H; ++row){
int idx = (row&1)<<1;
for(int col = 0; col < MLX_W; ++col){
// offset
register uint16_t rv = *pu16++;
i16 = (rv & 0xFC00) >> 10;
if(i16 > 0x1F) i16 -= 0x40;
*offset++ = (fp_t)offavg + (fp_t)occRow[row]*occRowScale + (fp_t)occColumn[col]*occColumnScale + (fp_t)i16*occRemScale;
// kta
i16 = (rv & 0xF) >> 1;
if(i16 > 0x03) i16 -= 0x08;
*kta++ = (ktaavg[idx|(col&1)] + i16*mul) / div;
// alpha
i16 = (rv & 0x3F0) >> 4;
if(i16 > 0x1F) i16 -= 0x40;
fp_t oft = (fp_t)a_r + accRow[row]*accRowScale + accColumn[col]*accColumnScale +i16*accRemScale;
*a++ = oft / diva;
*ol++ = (rv&1) ? 1 : 0;
}
}
scale1 = (CREG_VAL(REG_KTAVSCALE) >> 8) & 0xF; // kvscale
div = (fp_t)(1<<scale1);
val = CREG_VAL(REG_KVAVG);
// kv indexes: +2 for odd (<28><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>) rows, +1 for odd columns, so:
// [ 3, 2; 1, 0] for left upper corner (because datashit counts from 1, not from 0!)
i16 = val >> 12; if(i16 > 0x07) i16 -= 0x10;
ktaavg[0] = (int8_t)i16; // odd col, odd row
i16 = (val & 0xF0) >> 4; if(i16 > 0x07) i16 -= 0x10;
ktaavg[1] = (int8_t)i16; // even col, odd row
i16 = (val & 0x0F00) >> 8; if(i16 > 0x07) i16 -= 0x10;
ktaavg[2] = (int8_t)i16; // odd col, even row
i16 = val & 0x0F; if(i16 > 0x07) i16 -= 0x10;
ktaavg[3] = (int8_t)i16; // even col, even row
for(int i = 0; i < 4; ++i) params.kv[i] = ktaavg[i] / div;
val = CREG_VAL(REG_CPOFF);
params.cpOffset[0] = (val & 0x03ff);
if(params.cpOffset[0] > 0x1ff) params.cpOffset[0] -= 0x400;
params.cpOffset[1] = val >> 10;
if(params.cpOffset[1] > 0x1f) params.cpOffset[1] -= 0x40;
params.cpOffset[1] += params.cpOffset[0];
val = ((CREG_VAL(REG_KTAVSCALE) & 0xF0) >> 4) + 8;
i8 = (int8_t)(CREG_VAL(REG_KVTACP) & 0xFF);
params.cpKta = (fp_t)i8 / (1<<val);
val = (CREG_VAL(REG_KTAVSCALE) & 0x0F00) >> 8;
i16 = CREG_VAL(REG_KVTACP) >> 8;
if(i16 > 0x7F) i16 -= 0x100;
params.cpKv = (fp_t)i16 / (1<<val);
i16 = CREG_VAL(REG_KSTATGC) & 0xFF;
if(i16 > 0x7F) i16 -= 0x100;
params.tgc = (fp_t)i16;
params.tgc /= 32.;
val = (CREG_VAL(REG_SCALEACC)>>12); // alpha_scale_CP
i16 = CREG_VAL(REG_ALPHA)>>10; // cp_P1_P0_ratio
if(i16 > 0x1F) i16 -= 0x40;
div = (fp_t)(1<<val);
div *= (fp_t)(1<<27);
params.cpAlpha[0] = (fp_t)(CREG_VAL(REG_ALPHA) & 0x03FF) / div;
div = (fp_t)(1<<7);
params.cpAlpha[1] = params.cpAlpha[0] * (1. + (fp_t)i16/div);
i8 = (int8_t)(CREG_VAL(REG_KSTATGC) >> 8);
params.KsTa = (fp_t)i8/(1<<13);
div = 1<<((CREG_VAL(REG_CT34) & 0x0F) + 8); // kstoscale
val = CREG_VAL(REG_KSTO12);
i8 = (int8_t)(val & 0xFF);
params.KsTo[0] = i8 / div;
i8 = (int8_t)(val >> 8);
params.KsTo[1] = i8 / div;
val = CREG_VAL(REG_KSTO34);
i8 = (int8_t)(val & 0xFF);
params.KsTo[2] = i8 / div;
i8 = (int8_t)(val >> 8);
params.KsTo[3] = i8 / div;
// CT1 = -40, CT2 = 0 -> start from zero index, so CT[0] is CT2, CT[1] is CT3, CT[2] is CT4
params.CT[0] = 0.; // 0degr - between ranges 1 and 2
val = CREG_VAL(REG_CT34);
mul = ((val & 0x3000)>>12)*10.; // step
params.CT[1] = ((val & 0xF0)>>4)*mul; // CT3 - between ranges 2 and 3
params.CT[2] = ((val & 0x0F00) >> 8)*mul + params.CT[1]; // CT4 - between ranges 3 and 4
// alphacorr for each range: 11.1.11
params.alphacorr[0] = 1./(1. + params.KsTo[0] * 40.);
params.alphacorr[1] = 1.;
params.alphacorr[2] = (1. + params.KsTo[1] * params.CT[1]);
params.alphacorr[3] = (1. + params.KsTo[2] * (params.CT[2] - params.CT[1])) * params.alphacorr[2];
params.resolEE = (uint8_t)((CREG_VAL(REG_KTAVSCALE) & 0x3000) >> 12);
// Don't forget to check 'outlier' flags for wide purpose
return &params;
#undef CREG_VAL
}
/**
* @brief process_image - process both subpages (image data of sp0 lays in sp1, service data is in spare array)
* @param params
* @param subpages
* @param Service0
* @param subpageno
* @return
*/
fp_t *process_image(const int16_t subpage1[REG_IMAGEDATA_LEN]){
#define IMD_VAL(reg) subpage1[IMD_IDX(reg)]
// 11.2.2.1. Resolution restore
//fp_t resol_corr = (fp_t)(1<<params.resolEE) / (1<<mlx_getresolution()); // calibrated resol/current resol
fp_t resol_corr = (fp_t)(1<<params.resolEE) / (1<<2); // ONLY DEFAULT!
int16_t i16a;
fp_t dvdd, dTa, Kgain, pixOS[2]; // values for both subpages
// 11.2.2.2. Supply voltage value calculation
i16a = (int16_t)IMD_VAL(REG_IVDDPIX);
//U("rval="); USND(i2str(i16a));
dvdd = resol_corr*i16a - params.vdd25;
dvdd /= params.kVdd;
//U("dvdd="); USND(float2str(dvdd, 2));
fp_t dV = i16a - params.vdd25; // for next step
dV /= params.kVdd;
// 11.2.2.3. Ambient temperature calculation
i16a = (int16_t)IMD_VAL(REG_ITAPTAT);
int16_t i16b = (int16_t)IMD_VAL(REG_ITAVBE);
dTa = (fp_t)i16a / (i16a * params.alphaPTAT + i16b); // vptatart
dTa *= (fp_t)(1<<18);
dTa = (dTa / (1. + params.KvPTAT*dV)) - params.vPTAT25;
dTa = dTa / params.KtPTAT; // without 25degr - Ta0
// 11.2.2.4. Gain parameter calculation
i16a = (int16_t)IMD_VAL(REG_IGAIN);
Kgain = params.gainEE / (fp_t)i16a;
// 11.2.2.6.1
pixOS[0] = ((int16_t)IMD_VAL(REG_ICPSP0))*Kgain; // pix_OS_CP_SPx
pixOS[1] = ((int16_t)IMD_VAL(REG_ICPSP1))*Kgain;
// 11.2.2.6.2
for(int sp = 0; sp < 2; ++sp)
pixOS[sp] -= params.cpOffset[sp]*(1. + params.cpKta*dTa)*(1. + params.cpKv*dvdd);
// now make first approximation to image
uint16_t pixno = 0; // current pixel number - for indexing in parameters etc
for(int row = 0, rowidx = 0; row < MLX_H; ++row, rowidx ^= 2){
for(int col = 0, idx = rowidx; col < MLX_W; ++col, ++pixno, idx ^= 1){
uint8_t sp = (row&1)^(col&1); // subpage of current pixel - for `pixOS` and `cpAlpha`
// 11.2.2.5.1
fp_t curval = (fp_t)(subpage1[pixno]) * Kgain; // gain compensation
// 11.2.2.5.3
curval -= params.offset[pixno] * (1. + params.kta[pixno]*dTa) *
(1. + params.kv[idx]*dvdd); // add offset
// now `curval` is pix_OS == V_IR_emiss_comp (we can divide it by `emissivity` to compensate for it)
// 11.2.2.7: 'Pattern' is just subpage number!
fp_t IRcompens = curval - params.tgc * pixOS[sp]; // 11.2.2.8. Normalizing to sensitivity
// 11.2.2.8
fp_t alphaComp = params.alpha[pixno] - params.tgc * params.cpAlpha[sp];
alphaComp *= 1. + params.KsTa * dTa;
// 11.2.2.9: calculate To for basic range
fp_t Tar = dTa + 273.15 + 25.; // Ta+273.15
Tar = Tar*Tar*Tar*Tar; // T_aK4 (when \epsilon==1 this is T_{a-r} too)
fp_t ac3 = alphaComp*alphaComp*alphaComp;
fp_t Sx = ac3*IRcompens + alphaComp*ac3*Tar;
Sx = params.KsTo[1] * SQRT(SQRT(Sx));
fp_t To4 = IRcompens / (alphaComp * (1. - 273.15*params.KsTo[1]) + Sx) + Tar;
curval = SQRT(SQRT(To4)) - 273.15;
// 11.2.2.9.1.3. Extended To range calculation
int r = 0; // range 1 by default
fp_t ctx = -40.;
if(curval > params.CT[2]){ // range 4
r = 3; ctx = params.CT[2];
}else if(curval > params.CT[1]){ // range 3
r = 2; ctx = params.CT[1];
}else if(curval > params.CT[0]){ // range 2, default
r = 1; ctx = params.CT[0];
}
if(r != 1){ // recalculate for extended range if we are out of standard range
To4 = IRcompens / (alphaComp * params.alphacorr[r] * (1. + params.KsTo[r]*(curval - ctx))) + Tar;
curval = SQRT(SQRT(To4)) - 273.15;
}
mlx_image[pixno] = curval;
}
}
return mlx_image;
#undef IMD_VAL
}