2025-10-06 23:27:30 +03:00

540 lines
17 KiB
C

/*
* This file is part of the ir-allsky project.
* Copyright 2025 Edward V. Emelianov <edward.emelianoff@gmail.com>.
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <math.h>
#include <stm32f3.h>
#include <string.h>
#include "adc.h"
#include "hardware.h"
#include "i2c.h"
#include "mlxproc.h"
#include "proto.h"
#include "strfunc.h"
#include "usart.h"
#include "usb_dev.h"
#include "version.inc"
#define LOCBUFFSZ (32)
// local buffer for I2C data to send
static uint16_t locBuffer[LOCBUFFSZ];
static uint8_t I2Caddress = 0x33 << 1;
extern volatile uint32_t Tms;
uint8_t cartoon = 0; // "cartoon" mode: refresh image each time we get new
// functions to send data over USB or USART: to change them use flag in `parse_cmd`
typedef struct{
int (*S)(const char*); // send string
int (*P)(uint8_t); // put byte
int (*B)(const uint8_t*, int); // send raw bytes
} sendfun_t;
static sendfun_t usbsend = {
.S = USB_sendstr, .P = USB_putbyte, .B = USB_send
};
static sendfun_t usartsend = {
.S = usart_sendstr, .P = usart_putbyte, .B = usart_send
};
static sendfun_t *sendfun = &usbsend;
void chsendfun(int sendto){
if(sendto == SEND_USB) sendfun = &usbsend;
else sendfun = &usartsend;
}
// newline
#define N() sendfun->P('\n')
#define printu(x) do{sendfun->S(u2str(x));}while(0)
#define printi(x) do{sendfun->S(i2str(x));}while(0)
#define printuhex(x) do{sendfun->S(uhex2str(x));}while(0)
#define printfl(x,n) do{sendfun->S(float2str(x, n));}while(0)
// common names for frequent keys
const char* const Timage = "TIMAGE";
const char* const Image = "IMAGE";
static const char *const Sensno = "SENSNO=";
static const char *const OK = "OK\n", *const ERR = "ERR\n";
const char *const helpstring =
"https://github.com/eddyem/stm32samples/tree/master/F3:F303/MLX90640multi build#" BUILD_NUMBER " @ " BUILD_DATE "\n"
" management of single IR bolometer MLX90640\n"
"dn - draw nth image in ASCII\n"
"gn - get nth image 'as is' - float array of 768x4 bytes\n"
"l - list active sensors IDs\n"
"mn - show temperature map of nth image\n"
"tn - show nth image aquisition time\n"
"B - reinit BME280\n"
"E - get environment parameters (temperature etc)\n"
"G - get MLX state\n"
"R - reset device\n"
"T - print current Tms\n"
" Debugging options:\n"
"aa - change I2C address to a (a should be non-shifted value!!!)\n"
"c - continue MLX\n"
"i0..4 - setup I2C with speed 10k, 100k, 400k, 1M or 2M (experimental!)\n"
"p - pause MLX\n"
"s - stop MLX (and start from zero @ 'c')\n"
"A - get ADC values\n"
"C - \"cartoon\" mode on/off (show each new image) - USB only!!!\n"
"Dn - dump MLX parameters for sensor number n\n"
"Ia addr [n] - set device address for interactive work or (with n) change address of n'th sensor\n"
"Ir reg n - read n words from 16-bit register\n"
"Iw words - send words (hex/dec/oct/bin) to I2C\n"
"Is - scan I2C bus\n"
"M - get MCU temperature and Vdd value\n"
"O - set output of DAC (0..4095)\n"
"Px - set PWM output (0..100%) or get current value\n"
"Us - send string 's' to other interface\n"
;
TRUE_INLINE const char *setupI2C(char *buf){
static const char * const speeds[I2C_SPEED_AMOUNT] = {
[I2C_SPEED_10K] = "10K",
[I2C_SPEED_100K] = "100K",
[I2C_SPEED_400K] = "400K",
[I2C_SPEED_1M] = "1M",
[I2C_SPEED_2M] = "2M"
};
if(buf && *buf){
buf = omit_spaces(buf);
int speed = *buf - '0';
if(speed < 0 || speed >= I2C_SPEED_AMOUNT){
return ERR;
}
i2c_setup((i2c_speed_t)speed);
}
sendfun->S("I2CSPEED="); sendfun->S(speeds[i2c_curspeed]); N();
return NULL;
}
TRUE_INLINE const char *chhwaddr(const char *buf){
uint32_t a;
if(buf && *buf){
const char *nxt = getnum(buf, &a);
if(nxt && nxt != buf){
if(!mlx_sethwaddr(I2Caddress, a)) return ERR;
}else{
sendfun->S("Wrong number"); N();
return ERR;
}
}else{
sendfun->S("Need address"); N();
return ERR;
}
return OK;
}
// read sensor's number from `buf`; return -1 if error
static int getsensnum(const char *buf){
if(!buf || !*buf) return -1;
uint32_t num;
const char *nxt = getnum(buf, &num);
if(!nxt || nxt == buf || num >= N_SENSORS) return -1;
return (int) num;
}
TRUE_INLINE const char *chaddr(const char *buf){
uint32_t addr;
const char *nxt = getnum(buf, &addr);
if(nxt && nxt != buf){
if(addr > 0x7f) return ERR;
I2Caddress = (uint8_t) addr << 1;
int n = getsensnum(nxt);
if(n > -1) mlx_setaddr(n, addr);
}else addr = I2Caddress >> 1;
sendfun->S("I2CADDR="); sendfun->S(uhex2str(addr)); N();
return NULL;
}
// read I2C register[s] - only blocking read! (DMA allowable just for config/image reading in main process)
static const char *rdI2C(const char *buf){
uint32_t N = 0;
const char *nxt = getnum(buf, &N);
if(!nxt || buf == nxt || N > 0xffff) return ERR;
buf = nxt;
uint16_t reg = N, *b16 = NULL;
nxt = getnum(buf, &N);
if(!nxt || buf == nxt || N == 0 || N > I2C_BUFSIZE) return ERR;
if(!(b16 = i2c_read_reg16(I2Caddress, reg, N, 0))) return ERR;
if(N == 1){
char b[5];
u16s(*b16, b);
b[4] = 0;
sendfun->S(b); N();
}else hexdump16(sendfun->S, b16, N);
return NULL;
}
// read N numbers from buf, @return 0 if wrong or none
TRUE_INLINE uint16_t readNnumbers(const char *buf){
uint32_t D;
const char *nxt;
uint16_t N = 0;
while((nxt = getnum(buf, &D)) && nxt != buf && N < LOCBUFFSZ){
buf = nxt;
locBuffer[N++] = (uint16_t) D;
}
return N;
}
static const char *wrI2C(const char *buf){
uint16_t N = readNnumbers(buf);
if(N == 0) return ERR;
for(int i = 0; i < N; ++i){
sendfun->S("byte "); sendfun->S(u2str(i));
sendfun->S(" :"); sendfun->S(uhex2str(locBuffer[i])); N();
}
if(!i2c_write(I2Caddress, locBuffer, N)) return ERR;
return OK;
}
static void dumpfarr(float *arr){
for(int row = 0; row < 24; ++row){
for(int col = 0; col < 32; ++col){
printfl(*arr++, 2); sendfun->P(' ');
}
N();
}
}
// dump MLX parameters
TRUE_INLINE void dumpparams(const char *buf){
int N = getsensnum(buf);
if(N < 0){ sendfun->S(ERR); return; }
MLX90640_params *params = mlx_getparams(N);
if(!params){ sendfun->S(ERR); return; }
N(); sendfun->S(Sensno); sendfun->S(i2str(N));
sendfun->S("\nkVdd="); printi(params->kVdd);
sendfun->S("\nvdd25="); printi(params->vdd25);
sendfun->S("\nKvPTAT="); printfl(params->KvPTAT, 4);
sendfun->S("\nKtPTAT="); printfl(params->KtPTAT, 4);
sendfun->S("\nvPTAT25="); printi(params->vPTAT25);
sendfun->S("\nalphaPTAT="); printfl(params->alphaPTAT, 2);
sendfun->S("\ngainEE="); printi(params->gainEE);
sendfun->S("\nPixel offset parameters:\n");
float *offset = params->offset;
for(int row = 0; row < 24; ++row){
for(int col = 0; col < 32; ++col){
printfl(*offset++, 2); sendfun->P(' ');
}
N();
}
sendfun->S("K_talpha:\n");
dumpfarr(params->kta);
sendfun->S("Kv: ");
for(int i = 0; i < 4; ++i){
printfl(params->kv[i], 2); sendfun->P(' ');
}
sendfun->S("\ncpOffset=");
printi(params->cpOffset[0]); sendfun->S(", "); printi(params->cpOffset[1]);
sendfun->S("\ncpKta="); printfl(params->cpKta, 2);
sendfun->S("\ncpKv="); printfl(params->cpKv, 2);
sendfun->S("\ntgc="); printfl(params->tgc, 2);
sendfun->S("\ncpALpha="); printfl(params->cpAlpha[0], 2);
sendfun->S(", "); printfl(params->cpAlpha[1], 2);
sendfun->S("\nKsTa="); printfl(params->KsTa, 2);
sendfun->S("\nAlpha:\n");
dumpfarr(params->alpha);
sendfun->S("\nCT3="); printfl(params->CT[1], 2);
sendfun->S("\nCT4="); printfl(params->CT[2], 2);
for(int i = 0; i < 4; ++i){
sendfun->S("\nKsTo"); sendfun->P('0'+i); sendfun->P('=');
printfl(params->KsTo[i], 2);
sendfun->S("\nalphacorr"); sendfun->P('0'+i); sendfun->P('=');
printfl(params->alphacorr[i], 2);
}
N();
}
// get MLX state
TRUE_INLINE void getst(){
static const char *states[] = {
[MLX_NOTINIT] = "not init",
[MLX_WAITPARAMS] = "wait parameters DMA read",
[MLX_WAITSUBPAGE] = "wait subpage",
[MLX_READSUBPAGE] = "wait subpage DMA read",
[MLX_RELAX] = "do nothing"
};
mlx_state_t s = mlx_state();
sendfun->S("MLXSTATE=");
sendfun->S(states[s]); N();
}
// `draw`==1 - draw, ==0 - show T map, 2 - send raw float array with prefix 'TIMAGEX=y\nIMAGEX=' and postfix "ENDIMAGE\n"
static const char *drawimg(const char *buf, int draw){
int sensno = getsensnum(buf);
if(sensno > -1){
uint32_t T = mlx_lastimT(sensno);
fp_t *img = mlx_getimage(sensno);
if(img){
//sendfun->S(Sensno); sendfun->S(u2str(sensno)); N();
sendfun->S(Timage); sendfun->P('0'+sensno); sendfun->P('='); sendfun->S(u2str(T)); N();
switch(draw){
case 0:
dumpIma(img);
break;
case 1:
drawIma(img);
break;
case 2:
sendfun->S(Image); sendfun->P('0'+sensno); sendfun->P('=');
uint8_t *d = (uint8_t*)img;
uint32_t _2send = MLX_PIXNO * sizeof(float);
// send by portions of 256 bytes (as image is larger than ringbuffer)
while(_2send){
uint32_t portion = (_2send > 256) ? 256 : _2send;
sendfun->B(d, portion);
_2send -= portion;
d += portion;
}
sendfun->S("ENDIMAGE"); N();
break;
}
return NULL;
}
}
return ERR;
}
TRUE_INLINE void listactive(){
int N = mlx_nactive();
if(!N){ sendfun->S("No active sensors found!\n"); return; }
uint8_t *ids = mlx_activeids();
sendfun->S("Found "); sendfun->P('0'+N);
sendfun->S(" active sensors:"); N();
for(int i = 0; i < N_SENSORS; ++i)
if(ids[i]){
sendfun->S("SENSID");
sendfun->S(u2str(i)); sendfun->P('=');
sendfun->S(uhex2str(ids[i] >> 1));
N();
}
}
static void getimt(const char *buf){
int sensno = getsensnum(buf);
if(sensno > -1){
sendfun->S(Timage); sendfun->P('0'+sensno); sendfun->P('='); sendfun->S(u2str(mlx_lastimT(sensno))); N();
}else sendfun->S(ERR);
}
TRUE_INLINE void getenv(){
bme280_t env;
if(!get_environment(&env)) sendfun->S("BADENVIRONMENT\n");
sendfun->S("TEMPERATURE="); sendfun->S(float2str(env.T, 2));
sendfun->S("\nSKYTEMPERATURE="); sendfun->S(float2str(env.Tsky, 2));
sendfun->S("\nPRESSURE_HPA="); sendfun->S(float2str(env.P/100.f, 2));
sendfun->S("\nPRESSURE_MM="); sendfun->S(float2str(env.P * 0.00750062f, 2));
sendfun->S("\nHUMIDITY="); sendfun->S(float2str(env.H, 2));
sendfun->S("\nTEMP_DEW="); sendfun->S(float2str(env.Tdew, 1));
sendfun->S("\nT_MEASUREMENT="); sendfun->S(u2str(env.Tmeas));
N();
}
TRUE_INLINE const char *DAC_chval(const char *buf){
uint32_t D;
const char *nxt = getnum(buf, &D);
if(!nxt || nxt == buf || D > 4095) return ERR;
DAC1->DHR12R1 = D;
return OK;
}
TRUE_INLINE void getADC(){
sendfun->S("AIN0="); sendfun->S(u2str(getADCval(ADC_AIN0)));
sendfun->S("\nAIN1="); sendfun->S(u2str(getADCval(ADC_AIN1)));
sendfun->S("\nAIN5="); sendfun->S(u2str(getADCval(ADC_AIN5)));
N();
}
TRUE_INLINE void getMCUvals(){
sendfun->S("MCUTEMP="); sendfun->S(float2str(getMCUtemp(), 2));
sendfun->S("\nMCUVDD="); sendfun->S(float2str(getVdd(), 2));
N();
}
TRUE_INLINE const char* setpwm(const char *buf){
uint32_t D;
if(!buf || !*buf){
sendfun->S("PWM1="); sendfun->S(u2str(TIM3->CCR1));
sendfun->S("\nPWM2="); sendfun->S(u2str(TIM3->CCR2));
sendfun->S("\nPWM3="); sendfun->S(u2str(TIM3->CCR3));
sendfun->S("\nPWM4="); sendfun->S(u2str(TIM3->CCR4));
N();
return NULL;
}
const char *nxt = getnum(buf, &D);
if(!nxt || nxt == buf || !setPWM(PWM_CH_HEATER, D)) return ERR;
return OK;
}
/**
* @brief parse_cmd - user string parser
* @param buf - user data
* @param isusb - ==1 to send answer over usb, else send over USART1
* @return answer OK/ERR or NULL
*/
const char *parse_cmd(char *buf, int sendto){
if(!buf || !*buf) return NULL;
chsendfun(sendto);
if(buf[1]){
switch(*buf++){ // "long" commands
case 'a':
return chhwaddr(buf);
case 'd':
return drawimg(buf, 1);
case 'g':
return drawimg(buf, 2);
case 'i':
return setupI2C(buf);
case 'm':
return drawimg(buf, 0);
case 't':
getimt(buf); return NULL;
case 'D':
dumpparams(buf);
return NULL;
break;
case 'I':
buf = omit_spaces(buf);
switch(*buf){
case 'a':
return chaddr(buf);
case 'r':
return rdI2C(buf);
case 'w':
return wrI2C(buf);
case 's':
i2c_init_scan_mode();
return OK;
default:
return ERR;
}
break;
case 'O':
return DAC_chval(buf);
case 'P':
return setpwm(buf);
case 'U':
if(sendto == SEND_USB) chsendfun(SEND_USART);
else chsendfun(SEND_USB);
if(sendfun->S(buf) && N()) return OK;
return ERR;
default:
return ERR;
}
}
switch(*buf){ // "short" (one letter) commands
case 'A':
getADC();
break;
case 'c':
mlx_continue(); return OK;
break;
case 'i': return setupI2C(NULL); // current settings
case 'l':
listactive();
break;
case 'p':
mlx_pause(); return OK;
break;
case 's':
mlx_stop(); return OK;
case 'B':
if(bme_init()) return OK;
return ERR;
case 'C':
if(sendto != SEND_USB) return ERR;
cartoon = !cartoon; return OK;
case 'E':
getenv();
break;
case 'G':
getst();
break;
case 'M':
getMCUvals();
break;
case 'P':
return setpwm(NULL);
case 'R':
NVIC_SystemReset();
break;
case 'T':
sendfun->S("T="); sendfun->S(u2str(Tms)); N();
break;
case '?': // help
case 'h':
case 'H':
sendfun->S(helpstring);
break;
default:
return ERR;
break;
}
return NULL;
}
// dump image as temperature matrix
void dumpIma(const fp_t im[MLX_PIXNO]){
for(int row = 0; row < MLX_H; ++row){
for(int col = 0; col < MLX_W; ++col){
printfl(*im++, 1);
sendfun->P(' ');
}
N();
}
}
#define GRAY_LEVELS (16)
// 16-level character set ordered by fill percentage (provided by user)
static const char *const CHARS_16 = " .':;+*oxX#&%B$@";
// draw image in ASCII-art
void drawIma(const fp_t im[MLX_PIXNO]){
// Find min and max values
fp_t min_val = im[0], max_val = im[0];
const fp_t *iptr = im;
for(int row = 0; row < MLX_H; ++row){
for(int col = 0; col < MLX_W; ++col){
fp_t cur = *iptr++;
if(cur < min_val) min_val = cur;
else if(cur > max_val) max_val = cur;
}
}
fp_t range = max_val - min_val;
sendfun->S("RANGE="); sendfun->S(float2str(range, 3));
sendfun->S("\nMIN="); sendfun->S(float2str(min_val, 3));
sendfun->S("\nMAX="); sendfun->S(float2str(max_val, 3)); N();
if(fabsf(range) < 0.001) range = 1.; // solid fill -> blank
// Generate and print ASCII art
iptr = im;
for(int row = 0; row < MLX_H; ++row){
for(int col = 0; col < MLX_W; ++col){
fp_t normalized = ((*iptr++) - min_val) / range;
// Map to character index (0 to 15)
int index = (int)(normalized * GRAY_LEVELS);
// Ensure we stay within bounds
if(index < 0) index = 0;
else if(index > (GRAY_LEVELS-1)) index = (GRAY_LEVELS-1);
sendfun->P(CHARS_16[index]);
}
N();
}
N();
}