/* * This file is part of the nitrogen project. * Copyright 2023 Edward V. Emelianov . * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #include "hardware.h" #include "spi.h" #include "usb.h" #ifdef EBUG #include "strfunc.h" #endif #define SPIDR *((uint8_t*)&SPI2->DR) spiStatus spi_status = SPI_NOTREADY; volatile uint32_t wctr; #define WAITX(x) do{wctr = 0; while((x) && (++wctr < 360000)) IWDG->KR = IWDG_REFRESH; if(wctr==360000){ DBG("timeout"); return 0;}}while(0) // init SPI2 to work with and without DMA // ILI9341: SCL 0->1; CS=0; command - DC=0, data - DC=1; 1 dummy clock pulse before 24/32 bit data read // Channel 4 - SPI2 Rx // Channel 5 - SPI2 Tx void spi_setup(){ RCC->APB1ENR |= RCC_APB1ENR_SPI2EN; // Baudrate = 0b011 - fpclk/16 = 2MHz; software slave management (without hardware NSS pin) SPI2->CR1 = /*SPI_CR1_BIDIMODE | SPI_CR1_BIDIOE |*/ SPI_CR1_MSTR | SPI_CR1_BR_0 | SPI_CR1_BR_1 | SPI_CR1_SSM | SPI_CR1_SSI; // 8bit; RXNE generates after 8bit of data in FIFO SPI2->CR2 = SPI_CR2_FRXTH | SPI_CR2_DS_2|SPI_CR2_DS_1|SPI_CR2_DS_0 /*| SPI_CR2_TXDMAEN | SPI_CR2_RXDMAEN*/; spi_status = SPI_READY; SPI2->CR1 |= SPI_CR1_SPE; } int spi_waitbsy(){ WAITX(SPI2->SR & SPI_SR_BSY); return 1; } /** * @brief spi_send - send data over SPI2 (change data array with received bytes) * @param data - data to read * @param n - length of data * @return 0 if failed */ int spi_write(const uint8_t *data, uint32_t n){ if(spi_status != SPI_READY || !data || !n){ DBG("not ready"); return 0; } for(uint32_t x = 0; x < n; ++x){ WAITX(!(SPI2->SR & SPI_SR_TXE)); SPIDR = data[x]; //WAITX(!(SPI2->SR & SPI_SR_RXNE)); //data[x] = SPI2->DR; // clear RXNE after last things } return 1; } /** * @brief spi_send_dma - send data over SPI2 through DMA * @param data - data to read * @param n - length of data * @return 0 if failed */ int spi_write_dma(const uint8_t _U_ *data, uint32_t _U_ n){ if(spi_status != SPI_READY) return 0; return 0; } /** * @brief spi_read - read SPI2 data * @param data - data to read * @param n - length of data * @return n */ int spi_read(uint8_t _U_ *data, uint32_t _U_ n){ if(spi_status != SPI_READY){ DBG("not ready"); return 0; } //SPI2->CR1 &= ~SPI_CR1_BIDIOE; // Rx while(SPI2->SR & SPI_SR_RXNE) (void) SPI2->DR; for(uint32_t x = 0; x < n; ++x){ WAITX(!(SPI2->SR & SPI_SR_TXE)); SPIDR = 0; WAITX(!(SPI2->SR & SPI_SR_RXNE)); data[x] = SPI2->DR; } //SPI2->CR1 |= SPI_CR1_BIDIOE; // turn off clocking return 1; } /** * @brief spi_read_dma - read SPI2 data through DMA * @param data - data to read * @param n - length of data * @return n */ int spi_read_dma(uint8_t _U_ *data, uint32_t _U_ n){ if(spi_status != SPI_READY) return 0; return 0; }