/* * This file is part of the canbus4bta project. * Copyright 2024 Edward V. Emelianov . * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #include "hardware.h" #include "spi.h" #include "usb.h" #ifdef EBUG #include "strfunc.h" #endif //#define SPIDR *((volatile uint8_t*)&SPI2->DR) #define CHKIDX(idx) do{if(idx == 0 || idx > AMOUNT_OF_SPI) return;}while(0) #define CHKIDXR(idx) do{if(idx == 0 || idx > AMOUNT_OF_SPI) return 0;}while(0) spiStatus spi_status[AMOUNT_OF_SPI+1] = {0, SPI_NOTREADY, SPI_NOTREADY}; static volatile SPI_TypeDef* const SPIs[AMOUNT_OF_SPI+1] = {NULL, SPI1, SPI2}; #define WAITX(x) do{volatile uint32_t wctr = 0; while((x) && (++wctr < 360000)) IWDG->KR = IWDG_REFRESH; if(wctr==360000){ DBG("timeout"); return 0;}}while(0) // SPI DMA Rx buffer (set by spi_write_dma call) for SPI2 //static uint8_t *rxbufptr = NULL; //static uint32_t rxbuflen = 0; // init SPI to work with (only SPI2) and without DMA (both) // Channel 4 - SPI2 Rx // Channel 5 - SPI2 Tx void spi_setup(uint8_t idx){ CHKIDX(idx); volatile SPI_TypeDef *SPI = SPIs[idx]; SPI->CR1 = 0; // clear EN SPI->CR2 = 0; if(idx == 1){ // PB3/PB4, without MOSI; SPI for SSI: AF5 @PB3, PB4 GPIOB->AFR[0] = (GPIOB->AFR[0] & ~(GPIO_AFRL_AFRL3 | GPIO_AFRL_AFRL4)) | AFRf(5, 3) | AFRf(5, 4); GPIOB->MODER = (GPIOB->MODER & ~(GPIO_MODER_MODER3 | GPIO_MODER_MODER4)) | MODER_AF(3) | MODER_AF(4); RCC->APB1RSTR = RCC_APB2RSTR_SPI1RST; RCC->APB1RSTR = 0; // clear reset RCC->APB2ENR |= RCC_APB2ENR_SPI1EN; SPI->CR1 = SPI_CR1_SSM | SPI_CR1_SSI | SPI_CR1_RXONLY; // software slave management (without hardware NSS pin); RX only }else if(idx == 2){ // PB12..PB15 GPIOB->AFR[1] = (GPIOB->AFR[1] & ~(GPIO_AFRH_AFRH4 | GPIO_AFRH_AFRH5 | GPIO_AFRH_AFRH6 | GPIO_AFRH_AFRH7)) | AFRf(5, 12) | AFRf(5, 13) | AFRf(5, 14) | AFRf(5, 15); GPIOB->MODER = (GPIOB->MODER & ~(GPIO_MODER_MODER12 | GPIO_MODER_MODER13 | GPIO_MODER_MODER14 | GPIO_MODER_MODER15)) | MODER_AF(12) | MODER_AF(13) | MODER_AF(14) | MODER_AF(15); RCC->APB1RSTR = RCC_APB1RSTR_SPI2RST; // reset SPI RCC->APB1RSTR = 0; // clear reset RCC->APB1ENR |= RCC_APB1ENR_SPI2EN; SPI->CR2 = SPI_CR2_SSOE; // hardware NSS management // setup SPI2 DMA //RCC->AHBENR |= RCC_AHBENR_DMA1EN; //SPI->CR2 |= SPI_CR2_TXDMAEN | SPI_CR2_RXDMAEN; // Tx /*DMA1_Channel5->CPAR = (uint32_t)&(SPI2->DR); // hardware DMA1_Channel5->CCR = DMA_CCR_MINC | DMA_CCR_DIR | DMA_CCR_TEIE; // memory increment, mem->hw, error interrupt // Rx DMA1_Channel4->CPAR = (uint32_t)&(SPI2->DR); DMA1_Channel4->CCR = DMA_CCR_MINC | DMA_CCR_TCIE | DMA_CCR_TEIE; // mem inc, hw->mem, Rx complete and error interrupt NVIC_EnableIRQ(DMA1_Channel4_IRQn); // enable Rx interrupt NVIC_EnableIRQ(DMA1_Channel5_IRQn); // enable Tx interrupt */ }else return; // err // Baudrate = 0b110 - fpclk/128 SPI->CR1 |= SPI_CR1_MSTR | SPI_CR1_BR_2 | SPI_CR1_BR_1; // DS=8bit; RXNE generates after 8bit of data in FIFO; SPI->CR2 |= SPI_CR2_FRXTH | SPI_CR2_DS_2|SPI_CR2_DS_1|SPI_CR2_DS_0; spi_status[idx] = SPI_READY; if(idx == 2) SPI->CR1 |= SPI_CR1_SPE; // turn on SPI1 only when reading data DBG("SPI works"); } void spi_onoff(uint8_t idx, uint8_t on){ CHKIDX(idx); volatile SPI_TypeDef *SPI = SPIs[idx]; if(on) SPI->CR1 |= SPI_CR1_SPE; else SPI->CR1 &= ~SPI_CR1_SPE; } // turn off given SPI channel and release GPIO void spi_deinit(uint8_t idx){ CHKIDX(idx); volatile SPI_TypeDef *SPI = SPIs[idx]; SPI->CR1 = 0; SPI->CR2 = 0; if(idx == 1){ RCC->APB2ENR &= ~RCC_APB2ENR_SPI1EN; GPIOB->AFR[0] = GPIOB->AFR[0] & ~(GPIO_AFRL_AFRL3 | GPIO_AFRL_AFRL4); GPIOB->MODER = GPIOB->MODER & ~(GPIO_MODER_MODER3 | GPIO_MODER_MODER4); }else if(idx == 2){ RCC->APB1ENR &= ~RCC_APB1ENR_SPI2EN; GPIOB->AFR[1] = GPIOB->AFR[1] & ~(GPIO_AFRH_AFRH4 | GPIO_AFRH_AFRH5 | GPIO_AFRH_AFRH6 | GPIO_AFRH_AFRH7); GPIOB->MODER = GPIOB->MODER & ~(GPIO_MODER_MODER12 | GPIO_MODER_MODER13 | GPIO_MODER_MODER14 | GPIO_MODER_MODER15); } spi_status[idx] = SPI_NOTREADY; } int spi_waitbsy(uint8_t idx){ CHKIDXR(idx); WAITX(SPIs[idx]->SR & SPI_SR_BSY); return 1; } /** * @brief spi_writeread - send data over SPI (change data array with received bytes) * @param data - data to write/read * @param n - length of data * @return 0 if failed */ int spi_writeread(uint8_t idx, uint8_t *data, uint32_t n){ CHKIDXR(idx); if(spi_status[idx] != SPI_READY || !data || !n){ DBG("not ready"); return 0; } // clear SPI Rx FIFO for(int i = 0; i < 4; ++i) (void) SPI2->DR; for(uint32_t x = 0; x < n; ++x){ WAITX(!(SPIs[idx]->SR & SPI_SR_TXE)); *((volatile uint8_t*)&SPIs[idx]->DR) = data[x]; WAITX(!(SPIs[idx]->SR & SPI_SR_RXNE)); data[x] = *((volatile uint8_t*)&SPIs[idx]->DR); } return 1; } // read data through SPI in read-only mode int spi_read(uint8_t idx, uint8_t *data, uint32_t n){ CHKIDXR(idx); if(spi_status[idx] != SPI_READY || !data || !n){ DBG("not ready"); return 0; } // clear SPI Rx FIFO for(int i = 0; i < 4; ++i) (void) SPI2->DR; spi_onoff(idx, TRUE); for(uint32_t x = 0; x < n; ++x){ if(x == n - 1) SPIs[idx]->CR1 &= ~SPI_CR1_RXONLY; WAITX(!(SPIs[idx]->SR & SPI_SR_RXNE)); data[x] = *((volatile uint8_t*)&SPIs[idx]->DR); } spi_onoff(idx, FALSE); SPIs[idx]->CR1 |= SPI_CR1_RXONLY; return 1; } /** * @brief spi_send_dma - send data over SPI2 through DMA (used both for writing and reading) * @param data - data to read * @param rxbuf - pointer to receiving buffer (at least n bytes), can be also `data` (if `data` isn't const) * @param n - length of data * @return 0 if failed * !!! `data` buffer can be changed only after SPI_READY flag! */ /*int spi_write_dma(const uint8_t *data, uint8_t *rxbuf, uint32_t n){ if(spi_status[2] != SPI_READY) return 0; if(!spi_waitbsy(2)) return 0; rxbufptr = rxbuf; rxbuflen = n; // spi_setup(); - only so we can clear Rx FIFO! DMA1_Channel5->CMAR = (uint32_t) data; DMA1_Channel5->CNDTR = n; // check if user want to receive data if(rxbuf){ DMA1_Channel4->CCR |= DMA_CCR_TCIE; DMA1_Channel5->CCR &= ~DMA_CCR_TCIE; // turn off Tx ready interrupt DMA1_Channel4->CMAR = (uint32_t) rxbuf; DMA1_Channel4->CNDTR = n; DMA1_Channel4->CCR |= DMA_CCR_EN; // turn on reception }else DMA1_Channel5->CCR |= DMA_CCR_TCIE; // interrupt by Tx ready - user don't want reception spi_status[2] = SPI_BUSY; DMA1_Channel5->CCR |= DMA_CCR_EN; // turn on transmission return 1; }*/ /** * @brief spi_read - read SPI2 data * @param data - data to read * @param n - length of data * @return n */ /* int spi_read(uint8_t idx, uint8_t *data, uint32_t n){ CHKIDXR(idx); if(spi_status[idx] != SPI_READY){ DBG("not ready"); return 0; } if(!spi_waitbsy(idx)) return 0; // clear SPI Rx FIFO for(int i = 0; i < 4; ++i) (void) SPIs[idx]->DR; for(uint32_t x = 0; x < n; ++x){ WAITX(!(SPIs[idx]->SR & SPI_SR_TXE)); *((volatile uint8_t*)&SPIs[idx]->DR) = 0; WAITX(!(SPIs[idx]->SR & SPI_SR_RXNE)); data[x] = *((volatile uint8_t*)&SPIs[idx]->DR); //USB_sendstr("rd got "); USB_sendstr(uhex2str(data[x])); newline(); } return 1; }*/ /** * @brief spi_read_dma - got buffer read by DMA * @param n (o) - length of rxbuffer * @return amount of bytes read */ /*uint8_t *spi_read_dma(uint32_t *n){ if(spi_status[2] != SPI_READY || rxbuflen == 0) return NULL; if(n) *n = rxbuflen - DMA1_Channel4->CNDTR; // in case of error buffer would be underfull rxbuflen = 0; // prevent consequent readings return rxbufptr; }*/ /* // Rx ready interrupt void dma1_channel4_isr(){ spi_status[2] = SPI_READY; // ready independent on errors or Rx ready DMA1->IFCR = DMA_IFCR_CTCIF4 | DMA_IFCR_CTEIF4; // turn off DMA DMA1_Channel4->CCR &= ~DMA_CCR_EN; DMA1_Channel5->CCR &= ~DMA_CCR_EN; } // Tx ready interrupt void dma1_channel5_isr(){ spi_status[2] = SPI_READY; // ready independent on errors or Tx ready DMA1->IFCR = DMA_IFCR_CTCIF5 | DMA_IFCR_CTEIF5; // turn off DMA DMA1_Channel4->CCR &= ~DMA_CCR_EN; DMA1_Channel5->CCR &= ~DMA_CCR_EN; } */