/* * This file is part of the F0testbrd project. * Copyright 2021 Edward V. Emelianov . * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #include "adc.h" #include "i2c.h" #include "proto.h" #include "spi.h" #include "usart.h" #include "usb.h" #include "usb_lib.h" #include #define LOCBUFFSZ (32) // local buffer for I2C and SPI data to send static uint8_t locBuffer[LOCBUFFSZ]; void USB_sendstr(const char *str){ uint16_t l = 0; const char *b = str; while(*b++) ++l; USB_send((const uint8_t*)str, l); } static inline char *chPWM(volatile uint32_t *reg, char *buf){ char *lbuf = buf; lbuf = omit_spaces(lbuf); char cmd = *lbuf; lbuf = omit_spaces(lbuf + 1); uint32_t N; if(getnum(lbuf, &N) == lbuf) N = 1; uint32_t oldval = *reg; if(cmd == '-'){ // decrement if(oldval < N) return "Already at minimum"; else *reg -= N; }else if(cmd == '+'){ // increment if(oldval + N > 255) return "Already at maximum"; else *reg += N; }else{ USND("Wrong command: "); return buf; } return "OK"; } static inline char *TIM3pwm(char *buf){ uint8_t channel = *buf - '1'; if(channel > 3) return "Wrong channel number"; volatile uint32_t *reg = &TIM3->CCR1; return chPWM(®[channel], buf+1); } static inline char *getPWMvals(){ USND("TIM1CH1: "); USB_sendstr(u2str(TIM1->CCR1)); USND("\nTIM3CH1: "); USB_sendstr(u2str(TIM3->CCR1)); USND("\nTIM3CH2: "); USB_sendstr(u2str(TIM3->CCR2)); USND("\nTIM3CH3: "); USB_sendstr(u2str(TIM3->CCR3)); USND("\nTIM3CH4: "); USB_sendstr(u2str(TIM3->CCR4)); USND("\n"); return NULL; } static inline char *USARTsend(char *buf){ uint32_t N; if(buf == getnum(buf, &N)) return "Point number of USART"; if(N < 1 || N > USARTNUM) return "Wrong USART number"; buf = omit_spaces(buf + 1); usart_send(N, buf); transmit_tbuf(); return "OK"; } // read N numbers from buf, @return 0 if wrong or none static uint16_t readNnumbers(char *buf){ uint32_t D; char *nxt; uint16_t N = 0; while((nxt = getnum(buf, &D)) && nxt != buf && N < LOCBUFFSZ){ buf = nxt; locBuffer[N++] = (uint8_t) D&0xff; USND("add byte: "); USB_sendstr(uhex2str(D&0xff)); USND("\n"); } USND("Send "); USB_sendstr(u2str(N)); USND(" bytes\n"); return N; } // dump memory buffer static void hexdump(uint8_t *arr, uint16_t len){ char buf[52], *bptr = buf; for(uint16_t l = 0; l < len; ++l, ++arr){ for(int16_t j = 1; j > -1; --j){ register uint8_t half = (*arr >> (4*j)) & 0x0f; if(half < 10) *bptr++ = half + '0'; else *bptr++ = half - 10 + 'a'; } if(l % 16 == 15){ *bptr++ = '\n'; *bptr = 0; USB_sendstr(buf); bptr = buf; }else *bptr++ = ' '; } if(bptr != buf){ *bptr++ = '\n'; *bptr = 0; USB_sendstr(buf); } } static uint8_t i2cinited = 0; static inline char *setupI2C(char *buf){ buf = omit_spaces(buf); if(*buf < '0' || *buf > '2') return "Wrong speed"; i2c_setup(*buf - '0'); i2cinited = 1; return "OK"; } static uint8_t I2Caddress = 0; static inline char *saI2C(char *buf){ uint32_t addr; if(!getnum(buf, &addr) || addr > 0x7f) return "Wrong address"; I2Caddress = (uint8_t) addr << 1; USND("I2Caddr="); USB_sendstr(uhex2str(addr)); USND("\n"); return "OK"; } static inline void rdI2C(char *buf){ uint32_t N; char *nxt = getnum(buf, &N); if(!nxt || buf == nxt || N > 0xff){ USND("Bad register number\n"); return; } buf = nxt; uint8_t reg = N; nxt = getnum(buf, &N); if(!nxt || buf == nxt || N > LOCBUFFSZ){ USND("Bad length\n"); return; } if(!read_i2c_reg(I2Caddress, reg, locBuffer, N)){ USND("Error reading I2C\n"); return; } if(N == 0){ USND("OK"); return; } USND("Register "); USB_sendstr(uhex2str(reg)); USND(":\n"); hexdump(locBuffer, N); /*for(uint32_t i = 0; i < N; ++i){ if(i < 10) USND(" "); USB_sendstr(u2str(i)); USND(": "); USB_sendstr(uhex2str(locBuffer[i])); USND("\n"); }*/ } static inline char *wrI2C(char *buf){ uint16_t N = readNnumbers(buf); if(!write_i2c(I2Caddress, locBuffer, N)) return "Error writing I2C"; return "OK"; } static inline char *DAC_chval(char *buf){ uint32_t D; char *nxt = getnum(buf, &D); if(!nxt || nxt == buf || D > 4095) return "Wrong DAC amplitude\n"; DAC->DHR12R1 = D; return "OK"; } // write locBuffer to SPI static inline void wrSPI(int SPIidx, char *buf){ uint16_t N = readNnumbers(buf); if(N < 1){ *(uint8_t *)&(SPI1->DR) = 0xea; USND("Enter at least 1 number (max: "); USB_sendstr(u2str(LOCBUFFSZ)); USND(")\n"); return; } if(SPI_transmit(SPIidx, locBuffer, N)) USND("Error: busy?\n"); else USND("done"); } static inline void rdSPI(int SPIidx){ if(SPI_isoverflow(SPIidx)) USND("SPI buffer overflow\n"); uint8_t len = LOCBUFFSZ; if(SPI_getdata(SPIidx, locBuffer, &len)){ USND("Error getting data: busy?\n"); return; } if(len == 0){ USND("Nothing to read\n"); return; } if(len > LOCBUFFSZ) USND("Can't get full message: buffer too small\n"); USND("SPI data:\n"); hexdump(locBuffer, len); } static inline char *procSPI(char *buf){ int idx = 0; if(*buf == 'p') idx = 1; buf = omit_spaces(buf + 1); if(*buf == 'w') wrSPI(idx, buf + 1); else if(*buf == 'r') rdSPI(idx); else return "Enter `w` and data to write, `r` - to read"; return NULL; } const char *helpstring = "+/-[num] - increase/decrease TIM1ch1 PWM by 1 or `num`\n" "1..4'+'/'-'[num] - increase/decrease TIM3chN PWM by 1 or `num`\n" "A - get ADC values\n" "dx - change DAC lowcal to x\n" "g - get PWM values\n" "i0..3 - setup I2C with lowest..highest speed (5.8, 10 and 100kHz)\n" "Ia addr - set I2C address\n" "Iw bytes - send bytes (hex/dec/oct/bin) to I2C\n" "Ir reg n - read n bytes from I2C reg\n" "Is - scan I2C bus\n" "L - send long string over USB\n" "m - monitor ADC on/off\n" "Pw bytes - send bytes over SPI1\n" "pw bytes - send bytes over SPI2\n" "Pr - get data from SPI1\n" "pr - get data from SPI2\n" "R - software reset\n" "S - send short string over USB\n" "s - setup SPI (and turn off USARTs)\n" "Ux str - send string to USARTx (1..3)\n" "u - setup USARTs (and turn off SPI)\n" "T - MCU temperature\n" "V - Vdd\n" "W - test watchdog\n" ; void printADCvals(){ USND("AIN0: "); USB_sendstr(u2str(getADCval(0))); USND(" ("); USB_sendstr(u2str(getADCvoltage(0))); USND("/100 V)\nAIN1: "); USB_sendstr(u2str(getADCval(1))); USND(" ("); USB_sendstr(u2str(getADCvoltage(1))); USND("/100 V)\nAIN5: "); USB_sendstr(u2str(getADCval(2))); USND(" ("); USB_sendstr(u2str(getADCvoltage(2))); USND("/100 V)\n"); } const char *parse_cmd(char *buf){ // "long" commands switch(*buf){ case '+': case '-': return chPWM(&TIM1->CCR1, buf); break; case '1': case '2': case '3': case '4': return TIM3pwm(buf); break; case 'd': return DAC_chval(buf + 1); case 'i': return setupI2C(buf + 1); break; case 'I': if(!i2cinited) return "Init I2C first"; buf = omit_spaces(buf + 1); if(*buf == 'a') return saI2C(buf + 1); else if(*buf == 'r'){ rdI2C(buf + 1); return NULL; } else if(*buf == 'w') return wrI2C(buf + 1); else if(*buf == 's') i2c_init_scan_mode(); else return "Command should be 'Ia', 'Iw', 'Ir' or 'Is'\n"; break; case 'p': case 'P': return procSPI(buf); break; case 'U': return USARTsend(buf + 1); break; } // "short" commands if(buf[1] != '\n') return buf; switch(*buf){ case 'g': return getPWMvals(); break; case 'A': printADCvals(); break; case 'L': USND("Very long test string for USB (it's length is more than 64 bytes).\n" "This is another part of the string! Can you see all of this?\n"); return "Long test sent"; break; case 'm': ADCmon = !ADCmon; USND("Monitoring is "); if(ADCmon) USND("on\n"); else USND("off\n"); break; case 'R': USND("Soft reset\n"); //SEND("Soft reset\n"); NVIC_SystemReset(); break; case 'S': USND("Test string for USB\n"); return "Short test sent"; break; case 's': USND("SPI are ON, USART are OFF\n"); usart_stop(); spi_setup(); break; case 'T': return u2str(getMCUtemp()); break; case 'u': USND("USART are ON, SPI are OFF\n"); spi_stop(); usart_setup(); break; case 'V': return u2str(getVdd()); break; case 'W': USND("Wait for reboot\n"); //SEND("Wait for reboot\n"); while(1){nop();}; break; default: // help return helpstring; break; } return NULL; } // usb getline char *get_USB(){ static char tmpbuf[129], *curptr = tmpbuf; static int rest = 128; int x = USB_receive((uint8_t*)curptr); curptr[x] = 0; if(!x) return NULL; if(curptr[x-1] == '\n'){ curptr = tmpbuf; rest = 128; return tmpbuf; } curptr += x; rest -= x; if(rest <= 0){ // buffer overflow curptr = tmpbuf; rest = 128; } return NULL; } static char *_2str(uint32_t val, uint8_t minus){ static char strbuf[12]; char *bufptr = &strbuf[11]; *bufptr = 0; if(!val){ *(--bufptr) = '0'; }else{ while(val){ *(--bufptr) = val % 10 + '0'; val /= 10; } } if(minus) *(--bufptr) = '-'; return bufptr; } // return string with number `val` char *u2str(uint32_t val){ return _2str(val, 0); } char *i2str(int32_t i){ uint8_t minus = 0; uint32_t val; if(i < 0){ minus = 1; val = -i; }else val = i; return _2str(val, minus); } // print 32bit unsigned int as hex char *uhex2str(uint32_t val){ static char buf[12] = "0x"; int npos = 2; uint8_t *ptr = (uint8_t*)&val + 3; int8_t i, j, z=1; for(i = 0; i < 4; ++i, --ptr){ if(*ptr == 0){ // omit leading zeros if(i == 3) z = 0; if(z) continue; } else z = 0; for(j = 1; j > -1; --j){ uint8_t half = (*ptr >> (4*j)) & 0x0f; if(half < 10) buf[npos++] = half + '0'; else buf[npos++] = half - 10 + 'a'; } } buf[npos] = 0; return buf; } char *omit_spaces(const char *buf){ while(*buf){ if(*buf > ' ') break; ++buf; } return (char*)buf; } // In case of overflow return `buf` and N==0xffffffff // read decimal number & return pointer to next non-number symbol static char *getdec(const char *buf, uint32_t *N){ char *start = (char*)buf; uint32_t num = 0; while(*buf){ char c = *buf; if(c < '0' || c > '9'){ break; } if(num > 429496729 || (num == 429496729 && c > '5')){ // overflow *N = 0xffffff; return start; } num *= 10; num += c - '0'; ++buf; } *N = num; return (char*)buf; } // read hexadecimal number (without 0x prefix!) static char *gethex(const char *buf, uint32_t *N){ char *start = (char*)buf; uint32_t num = 0; while(*buf){ char c = *buf; uint8_t M = 0; if(c >= '0' && c <= '9'){ M = '0'; }else if(c >= 'A' && c <= 'F'){ M = 'A' - 10; }else if(c >= 'a' && c <= 'f'){ M = 'a' - 10; } if(M){ if(num & 0xf0000000){ // overflow *N = 0xffffff; return start; } num <<= 4; num += c - M; }else{ break; } ++buf; } *N = num; return (char*)buf; } // read octal number (without 0 prefix!) static char *getoct(const char *buf, uint32_t *N){ char *start = (char*)buf; uint32_t num = 0; while(*buf){ char c = *buf; if(c < '0' || c > '7'){ break; } if(num & 0xe0000000){ // overflow *N = 0xffffff; return start; } num <<= 3; num += c - '0'; ++buf; } *N = num; return (char*)buf; } // read binary number (without b prefix!) static char *getbin(const char *buf, uint32_t *N){ char *start = (char*)buf; uint32_t num = 0; while(*buf){ char c = *buf; if(c < '0' || c > '1'){ break; } if(num & 0x80000000){ // overflow *N = 0xffffff; return start; } num <<= 1; if(c == '1') num |= 1; ++buf; } *N = num; return (char*)buf; } /** * @brief getnum - read uint32_t from string (dec, hex or bin: 127, 0x7f, 0b1111111) * @param buf - buffer with number and so on * @param N - the number read * @return pointer to first non-number symbol in buf * (if it is == buf, there's no number or if *N==0xffffffff there was overflow) */ char *getnum(const char *txt, uint32_t *N){ char *nxt = NULL; char *s = omit_spaces(txt); if(*s == '0'){ // hex, oct or 0 if(s[1] == 'x' || s[1] == 'X'){ // hex nxt = gethex(s+2, N); if(nxt == s+2) nxt = (char*)txt; }else if(s[1] > '0'-1 && s[1] < '8'){ // oct nxt = getoct(s+1, N); if(nxt == s+1) nxt = (char*)txt; }else{ // 0 nxt = s+1; *N = 0; } }else if(*s == 'b' || *s == 'B'){ nxt = getbin(s+1, N); if(nxt == s+1) nxt = (char*)txt; }else{ nxt = getdec(s, N); if(nxt == s) nxt = (char*)txt; } return nxt; }