/* * This file is part of the canonmanage project. * Copyright 2022 Edward V. Emelianov . * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #include #include "canon.h" #include "flash.h" #include "hardware.h" #include "proto.h" #include "spi.h" #include "usb.h" #include "version.inc" static const char *OK = "OK", *FAIL = "FAIL"; char *omit_spaces(const char *buf){ while(*buf){ if(*buf > ' ') break; ++buf; } return (char*)buf; } // In case of overflow return `buf` and N==0xffffffff // read decimal number & return pointer to next non-number symbol static char *getdec(const char *buf, uint32_t *N){ char *start = (char*)buf; uint32_t num = 0; while(*buf){ char c = *buf; if(c < '0' || c > '9'){ break; } if(num > 429496729 || (num == 429496729 && c > '5')){ // overflow *N = 0xffffff; return start; } num *= 10; num += c - '0'; ++buf; } *N = num; return (char*)buf; } // read hexadecimal number (without 0x prefix!) static char *gethex(const char *buf, uint32_t *N){ char *start = (char*)buf; uint32_t num = 0; while(*buf){ char c = *buf; uint8_t M = 0; if(c >= '0' && c <= '9'){ M = '0'; }else if(c >= 'A' && c <= 'F'){ M = 'A' - 10; }else if(c >= 'a' && c <= 'f'){ M = 'a' - 10; } if(M){ if(num & 0xf0000000){ // overflow *N = 0xffffff; return start; } num <<= 4; num += c - M; }else{ break; } ++buf; } *N = num; return (char*)buf; } // read octal number (without 0 prefix!) static char *getoct(const char *buf, uint32_t *N){ char *start = (char*)buf; uint32_t num = 0; while(*buf){ char c = *buf; if(c < '0' || c > '7'){ break; } if(num & 0xe0000000){ // overflow *N = 0xffffff; return start; } num <<= 3; num += c - '0'; ++buf; } *N = num; return (char*)buf; } // read binary number (without b prefix!) static char *getbin(const char *buf, uint32_t *N){ char *start = (char*)buf; uint32_t num = 0; while(*buf){ char c = *buf; if(c < '0' || c > '1'){ break; } if(num & 0x80000000){ // overflow *N = 0xffffff; return start; } num <<= 1; if(c == '1') num |= 1; ++buf; } *N = num; return (char*)buf; } /** * @brief getnum - read uint32_t from string (dec, hex or bin: 127, 0x7f, 0b1111111) * @param buf - buffer with number and so on * @param N - the number read * @return pointer to first non-number symbol in buf * (if it is == buf, there's no number or if *N==0xffffffff there was overflow) */ char *getnum(const char *txt, uint32_t *N){ char *nxt = NULL; char *s = omit_spaces(txt); if(*s == '0'){ // hex, oct or 0 if(s[1] == 'x' || s[1] == 'X'){ // hex nxt = gethex(s+2, N); if(nxt == s+2) nxt = (char*)txt; }else if(s[1] > '0'-1 && s[1] < '8'){ // oct nxt = getoct(s+1, N); if(nxt == s+1) nxt = (char*)txt; }else{ // 0 nxt = s+1; *N = 0; } }else if(*s == 'b' || *s == 'B'){ nxt = getbin(s+1, N); if(nxt == s+1) nxt = (char*)txt; }else{ nxt = getdec(s, N); if(nxt == s) nxt = (char*)txt; } return nxt; } const char* helpmsg = "https://github.com/eddyem/stm32samples/tree/master/F1-nolib/Canon_managing_device build#" BUILD_NUMBER " @ " BUILD_DATE "\n" "0 - move to smallest foc value (e.g. 2.5m)\n" "1 - move to largest foc value (e.g. infinity)\n" "a - move focus to given ABSOLUTE position or get current value (without number)\n" "d - open/close diaphragm by 1 step (+/-), open/close fully (o/c) (no way to know it current status)\n" "f - move focus to given RELATIVE position\n" "h - turn on hand focus management\n" "i - get lens information\n" "l - get lens model\n" "r - get regulators' state\n" "\t\tdebugging/conf commands:\n" "A - set (!0) or reset (0) autoinit\n" "C - set CAN speed (25-3000 kbaud)\n" "D - set CAN ID (11 bit)\n" "E - erase full flash storage\n" "F - change SPI flags (F f val), f== l-LSBFIRST, b-BR [18MHz/2^(b+1)], p-CPOL, h-CPHA\n" "G - get SPI status\n" "I - reinit SPI\n" "L - 'flood' message (same as `S` but every 250ms until next command)\n" "P - dump current config\n" "R - software reset\n" "S - send data over SPI\n" "T - show Tms value\n" "X - save current config to flash\n" ; #define STBUFSZ 255 static char stbuf[STBUFSZ+1], *bptr = NULL; static int blen = 0; static void initbuf(){bptr = stbuf; blen = STBUFSZ; *bptr = 0;} #define newline() do{if(blen){ *bptr++ = '\n'; *bptr = 0; --blen; }}while(0) static void add2buf(const char *s){ while(blen && *s){ *bptr++ = *s++; --blen; } *bptr = 0; } #define SPIBUFSZ (64) // buffer for SPI sending static uint8_t spibuf[SPIBUFSZ]; static int spibuflen; // length of spibuf // put user data into buffer static int initspibuf(const char *buf){ uint32_t D; spibuflen = 0; do{ const char *nxt = getnum(buf, &D); if(buf == nxt) break; buf = nxt; if(D > 0xff){ USB_send("Number should be from 0 to 0xff\n"); return 0; } spibuf[spibuflen++] = (uint8_t)D; }while(spibuflen < SPIBUFSZ); return spibuflen; } static void sendspibuf(){ if(spibuflen < 1) return; uint8_t buf[SPIBUFSZ]; memcpy(buf, spibuf, spibuflen); if(spibuflen == SPI_transmit((uint8_t*)buf, (uint8_t)spibuflen)){ USB_send("Got SPI answer: "); for(int i = 0; i < spibuflen; ++i){ if(i) USB_send(", "); USB_send(u2hexstr(buf[i])); } USB_send("\n"); }else USB_send("Failed to send SPI buffer\n"); } static void errw(int e){ if(e){ add2buf("Error with code "); add2buf(u2str(e)); if(e == 1) add2buf(" (busy or need initialization)"); }else add2buf(OK); } extern uint8_t usbON; const char *connmsgs[LENS_S_AMOUNT+1] = { [LENS_DISCONNECTED] = "disconnected", [LENS_SLEEPING] = "sleeping, need init", [LENS_OVERCURRENT] = "overcurrent", [LENS_INITIALIZED] = "initialized", [LENS_READY] = "ready", [LENS_ERR] = "error", [LENS_S_AMOUNT] = "wrong state" }; const char *inimsgs[INI_S_AMOUNT+1] = { [INI_START] = "started", [INI_FGOTOZ] = "go to min F", [INI_FPREPMAX] = "prepare to go to max F", [INI_FGOTOMAX] = "go to max F", [INI_FPREPOLD] = "prepare to return to original F", [INI_FGOTOOLD] = "go to starting F", [INI_READY] = "ready", [INI_ERR] = "error in init procedure", [INI_S_AMOUNT] = "wrong state" }; const char *parse_cmd(const char *buf){ static uint32_t lastFloodTime = 0; if(lastFloodTime && (Tms - lastFloodTime > FLOODING_INTERVAL)){ sendspibuf(); lastFloodTime = Tms ? Tms : 1; } if(!buf || *buf == 0) return NULL; lastFloodTime= FALSE; initbuf(); if(buf[1] == '\n' || !buf[1]){ // one symbol commands switch(*buf){ case 'a': case 'f': errw(canon_focus(-1)); break; case '-': flashstorage_init(); break; case '0': errw(canon_sendcmd(CANON_FMIN)); break; case '1': errw(canon_sendcmd(CANON_FMAX)); break; case 'i': errw(canon_getinfo()); break; case 'l': errw(canon_asku16(CANON_GETMODEL)); break; case 'r': errw(canon_asku16(CANON_GETREG)); break; case 'E': if(erase_storage(-1)) add2buf(FAIL); add2buf(OK); break; case 'F': // just watch SPI->CR1 value add2buf("SPI1->CR1="); add2buf(u2hexstr(SPI_CR1)); break; case 'G': add2buf("SPI "); switch(SPI_status){ case SPI_NOTREADY: add2buf("not ready"); break; case SPI_READY: add2buf("ready"); break; case SPI_BUSY: add2buf("busy"); break; default: add2buf("unknown"); } add2buf("\nstate="); uint16_t s = canon_getstate(); uint8_t idx = s & 0xff; if(idx > LENS_S_AMOUNT) idx = LENS_S_AMOUNT; add2buf(connmsgs[idx]); idx = s >> 8; add2buf("\ninistate="); if(idx > INI_S_AMOUNT) idx = INI_S_AMOUNT; add2buf(inimsgs[idx]); break; case 'h': errw(canon_sendcmd(CANON_FOCBYHANDS)); break; case 'I': USB_send("Reinit SPI\n"); spi_setup(); canon_init(); return NULL; break; case 'P': dump_userconf(); return NULL; break; case 'R': USB_send("Soft reset\n"); NVIC_SystemReset(); break; case 'T': add2buf("Tms="); add2buf(u2str(Tms)); break; case 'X': if(store_userconf()) add2buf(FAIL); else add2buf(OK); break; default: return helpmsg; } newline(); return stbuf; } uint32_t D = 0; int16_t neg; char *nxt; switch(*buf++){ // long messages case 'a': // move focus to absolute position buf = omit_spaces(buf); neg = 1; if(*buf == '-'){ ++buf; neg = -1; } nxt = getnum(buf, &D); if(nxt == buf) add2buf("Need number"); else if(D > 0x7fff) add2buf("From -0x7fff to 0x7fff"); else errw(canon_focus(neg * (int16_t)D)); break; case 'A': nxt = getnum(buf, &D); if(nxt != buf){ if(D) the_conf.autoinit = 1; else the_conf.autoinit = 0; } USB_send("autoinit="); USB_send(u2str(the_conf.autoinit)); USB_send("\n"); break; case 'd': nxt = omit_spaces(buf); errw(canon_diaphragm(*nxt)); break; case 'f': // move focus to relative position buf = omit_spaces(buf); neg = 1; if(*buf == '-'){ ++buf; neg = -1; } nxt = getnum(buf, &D); if(nxt == buf) add2buf("Need number"); else if(D > 0x7fff) add2buf("From -0x7fff to 0x7fff"); else{ if(canon_writeu16(CANON_FOCMOVE, neg * (int16_t)D)) add2buf(OK); else add2buf(FAIL); } break; case 'C': nxt = getnum(buf, &D); if(nxt != buf && D >= 25 && D <= 3000){ the_conf.canspeed = D; add2buf("CAN_speed="); add2buf(u2str(the_conf.canspeed)); }else add2buf(FAIL); break; case 'D': nxt = getnum(buf, &D); if(nxt != buf && D < 0x800){ the_conf.canID = D; add2buf("CAN_ID="); add2buf(u2str(the_conf.canID)); }else add2buf(FAIL); break; case 'F': // SPI flags nxt = omit_spaces(buf); char c = *nxt; if(*nxt && *nxt != '\n'){ buf = nxt + 1; nxt = getnum(buf, &D); if(buf == nxt || D > 7) return helpmsg; } switch(c){ case 'b': SPI_CR1 &= ~SPI_CR1_BR; SPI_CR1 |= ((uint8_t)D) << 3; break; case 'h': if(D) SPI_CR1 |= SPI_CR1_CPHA; else SPI_CR1 &= ~SPI_CR1_CPHA; break; case 'l': if(D) SPI_CR1 |= SPI_CR1_LSBFIRST; else SPI_CR1 &= ~SPI_CR1_LSBFIRST; break; case 'p': if(D) SPI_CR1 |= SPI_CR1_CPOL; else SPI_CR1 &= ~SPI_CR1_CPOL; break; default: return helpmsg; } add2buf("SPI_CR1="); add2buf(u2hexstr(SPI_CR1)); break; case 'L': if(0 == initspibuf(buf)){ USB_send("Enter data bytes\n"); return NULL; } USB_send("OK, activated\n"); sendspibuf(); lastFloodTime = Tms ? Tms : 1; return NULL; break; case 'S': // use stbuf here to store user data if(0 == initspibuf(buf)){ USB_send("Enter data bytes\n"); return NULL; } USB_send("Send: "); for(int i = 0; i < spibuflen; ++i){ if(i) USB_send(", "); USB_send(u2hexstr(spibuf[i])); } USB_send("\n"); sendspibuf(); return NULL; break; default: return --buf; } newline(); return stbuf; } // return string with number `val` char *u2str(uint32_t val){ static char strbuf[11]; char *bufptr = &strbuf[10]; *bufptr = 0; if(!val){ *(--bufptr) = '0'; }else{ while(val){ *(--bufptr) = val % 10 + '0'; val /= 10; } } return bufptr; } char *u2hexstr(uint32_t val){ static char strbuf[11] = "0x"; char *sptr = strbuf + 2; uint8_t *ptr = (uint8_t*)&val + 3; int8_t i, j, z=1; for(i = 0; i < 4; ++i, --ptr){ if(*ptr == 0){ // omit leading zeros if(i == 3) z = 0; if(z) continue; } else z = 0; for(j = 1; j > -1; --j){ uint8_t half = (*ptr >> (4*j)) & 0x0f; if(half < 10) *sptr++ = half + '0'; else *sptr++ = half - 10 + 'a'; } } *sptr = 0; return strbuf; }