/* * This file is part of the MLX90640 project. * Copyright 2022 Edward V. Emelianov . * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #include #include "hardware.h" #include "i2c.h" #include "mlx90640.h" #include "mlx90640_regs.h" #include "strfunct.h" #ifdef EBUG extern volatile uint32_t Tms; #endif mlx90640_state mlx_state = M_ERROR; MLX90640_params params; #if REG_CALIBRDATA_LEN > MLX_DMA_MAXLEN || MLX_PIXARRSZ > MLX_DMA_MAXLEN #error "MLX_DMA_MAXLEN should be >= REG_CALIBRDATA_LEN" #endif static uint16_t dataarray[MLX_DMA_MAXLEN]; // array for raw data from sensor static int portionlen = 0; // data length in `dataarray` float mlx_image[MLX_PIXNO]; // ready image #define CREG_VAL(reg) dataarray[CREG_IDX(reg)] #define IMD_VAL(reg) dataarray[IMD_IDX(reg)] static uint8_t simpleimage = 0; // ==1 not to calibrate T static uint8_t subpageno = 0; // subpage number // reg_control values for subpage #0 and #1 static const uint16_t reg_control_val[2] = { REG_CONTROL_CHESS | REG_CONTROL_RES18 | REG_CONTROL_REFR_2HZ | REG_CONTROL_SUBPSEL | REG_CONTROL_DATAHOLD | REG_CONTROL_SUBPEN, REG_CONTROL_CHESS | REG_CONTROL_RES18 | REG_CONTROL_REFR_2HZ | REG_CONTROL_SUBP1 | REG_CONTROL_SUBPSEL | REG_CONTROL_DATAHOLD | REG_CONTROL_SUBPEN }; // read register value int read_reg(uint16_t reg, uint16_t *val){ reg = __REV16(reg); if(I2C_OK != i2c_7bit_send((uint8_t*)®, 2, 0)){ DBG("Can't send address"); return FALSE; } uint16_t d; i2c_status s = i2c_7bit_receive_twobytes((uint8_t*)&d); if(I2C_OK != s){ #ifdef EBUG DBG("Can't get info, s="); printu(s); NL(); #endif return FALSE; } *val = __REV16(d); return TRUE; } // blocking read N uint16_t values starting from `reg` // @param reg - register to read // @param N (io) - amount of bytes to read / bytes read // @return `dataarray` or NULL if failed uint16_t *read_data(uint16_t reg, uint16_t *N){ uint16_t n = *N; if(n < 1 || n > MLX_DMA_MAXLEN) return NULL; uint16_t i, *data = dataarray; #ifdef EBUG SEND("Tms="); printu(Tms); newline(); #endif for(i = 0; i < n; ++i){ if(!read_reg(reg++, data++)){ DBG("can't read"); break; } } #ifdef EBUG SEND("Tms="); printu(Tms); newline(); #endif *N = i; return dataarray; } // write register value int write_reg(uint16_t reg, uint16_t val){ // little endian -> big endian uint8_t _4bytes[4]; _4bytes[0] = reg >> 8; _4bytes[1] = reg & 0xff; _4bytes[2] = val >> 8; _4bytes[3] = val & 0xff; if(I2C_OK != i2c_7bit_send(_4bytes, 4, 1)) return FALSE; return TRUE; } /** * @brief read_data_dma - read big data buffer by DMA * @param reg - starting register number * @param N - amount of data (in 16-bit words) * @return FALSE if can't run operation */ int read_data_dma(uint16_t reg, int N){ if(N < 1 || N > MLX_DMA_MAXLEN) return FALSE; /*uint8_t _2bytes[2]; _2bytes[0] = reg >> 8; // big endian! _2bytes[1] = reg & 0xff;*/ reg = __REV16(reg); portionlen = N; if(I2C_OK != i2c_7bit_send((uint8_t*)®, 2, 0)){ DBG("DMA: can't send address"); return FALSE; } if(I2C_OK != i2c_7bit_receive_DMA((uint8_t*)dataarray, N*2)) return FALSE; return TRUE; } /***************************************************************************** Calculate parameters & values *****************************************************************************/ // calculate Vdd from vddRAM register /* static float getVdd(uint16_t vddRAM){ int16_t ram = (int16_t) vddRAM; float vdd = (float)ram - params.vdd25; return vdd / params.kVdd + 3.3f; }*/ // fill OCC/ACC row/col arrays static void occacc(int8_t *arr, int l, uint16_t *regstart){ int n = l >> 2; // divide by 4 int8_t *p = arr; for(int i = 0; i < n; ++i){ register uint16_t val = *regstart++; *p++ = (val & 0x000F) >> 0; *p++ = (val & 0x00F0) >> 4; *p++ = (val & 0x0F00) >> 8; *p++ = (val ) >> 12; } for(int i = 0; i < l; ++i, ++arr){ if(*arr > 0x07) *arr -= 0x10; } } // get all parameters' values from `dataarray`, return FALSE if something failed static int get_parameters(){ #ifdef EBUG SEND("0 Tms="); printu(Tms); newline(); #endif int8_t i8; int16_t i16; uint16_t *pu16; uint16_t val = CREG_VAL(REG_VDD); i8 = (int8_t) (val >> 8); params.kVdd = i8 << 5; if(params.kVdd == 0) return FALSE; i16 = val & 0xFF; params.vdd25 = ((i16 - 0x100) << 5) - (1<<13); val = CREG_VAL(REG_KVTPTAT); i16 = (val & 0xFC00) >> 10; if(i16 > 0x1F) i16 -= 0x40; params.KvPTAT = (float)i16 / (1<<12); i16 = (val & 0x03FF); if(i16 > 0x1FF) i16 -= 0x400; params.KtPTAT = (float)i16 / 8.f; params.vPTAT25 = (int16_t) CREG_VAL(REG_PTAT); val = CREG_VAL(REG_APTATOCCS) >> 12; params.alphaPTAT = val / 4.f + 8.f; params.gainEE = (int16_t)CREG_VAL(REG_GAIN); if(params.gainEE == 0) return FALSE; #ifdef EBUG SEND("1 Tms="); printu(Tms); newline(); #endif int8_t occRow[MLX_H]; int8_t occColumn[MLX_W]; occacc(occRow, MLX_H, &CREG_VAL(REG_OCCROW14)); occacc(occColumn, MLX_W, &CREG_VAL(REG_OCCCOL14)); int8_t accRow[MLX_H]; int8_t accColumn[MLX_W]; occacc(accRow, MLX_H, &CREG_VAL(REG_ACCROW14)); occacc(accColumn, MLX_W, &CREG_VAL(REG_ACCCOL14)); val = CREG_VAL(REG_APTATOCCS); // need to do multiplication instead of bitshift, so: float occRemScale = 1<<(val&0x0F), occColumnScale = 1<<((val>>4)&0x0F), occRowScale = 1<<((val>>8)&0x0F); int16_t offavg = (int16_t) CREG_VAL(REG_OSAVG); // even/odd column/row numbers are for starting from 1, so for starting from 0 we chould swap them: // even - for 1,3,5,...; odd - for 0,2,4,... etc int8_t ktaavg[4]; // 0 - odd row, odd col; 1 - odd row even col; 2 - even row, odd col; 3 - even row, even col val = CREG_VAL(REG_KTAAVGODDCOL); ktaavg[2] = (int8_t)(val & 0xFF); // odd col, even row -> col 0,2,..; row 1,3,.. ktaavg[0] = (int8_t)(val >> 8);; // odd col, odd row -> col 0,2,..; row 0,2,.. val = CREG_VAL(REG_KTAAVGEVENCOL); ktaavg[3] = (int8_t)(val & 0xFF); // even col, even row -> col 1,3,..; row 1,3,.. ktaavg[1] = (int8_t)(val >> 8); // even col, odd row -> col 1,3,..; row 0,2,.. // so index of ktaavg is 2*(row&1)+(col&1) val = CREG_VAL(REG_KTAVSCALE); uint8_t scale1 = ((val & 0xFF)>>4) + 8, scale2 = (val&0xF); if(scale1 == 0 || scale2 == 0) return FALSE; float mul = (float)(1<> 12); diva *= (float)(1<<30); // alpha_scale float accRowScale = 1<<((val & 0x0f00)>>8), accColumnScale = 1<<((val & 0x00f0)>>4), accRemScale = 1<<(val & 0x0f); pu16 = &CREG_VAL(REG_OFFAK1); float *kta = params.kta, *offset = params.offset; #ifdef EBUG SEND("2 Tms="); printu(Tms); newline(); #endif for(int row = 0; row < MLX_H; ++row){ int idx = (row&1)<<1; for(int col = 0; col < MLX_W; ++col){ // offset register uint16_t rv = *pu16++; i16 = (rv & 0xFC00) >> 10; if(i16 > 0x1F) i16 -= 0x40; *offset++ = (float)offavg + (float)occRow[row]*occRowScale + (float)occColumn[col]*occColumnScale + (float)i16*occRemScale; // kta i16 = (rv & 0xF) >> 1; if(i16 > 0x03) i16 -= 0x08; *kta++ = (ktaavg[idx|(col&1)] + i16*mul) / div; // alpha i16 = (rv & 0x3F0) >> 4; if(i16 > 0x1F) i16 -= 0x40; float oft = (float)a_r + accRow[row]*accRowScale + accColumn[col]*accColumnScale +i16*accRemScale; *a++ = oft / diva; } } #ifdef EBUG SEND("3 Tms="); printu(Tms); newline(); #endif scale1 = (CREG_VAL(REG_KTAVSCALE) >> 8) & 0xF; // kvscale div = (float)(1<> 12; if(i16 > 0x07) i16 -= 0x10; ktaavg[0] = i16; // odd col, odd row i16 = (val & 0xF0) >> 4; if(i16 > 0x07) i16 -= 0x10; ktaavg[1] = i16; // even col, odd row i16 = (val & 0x0F00) >> 8; if(i16 > 0x07) i16 -= 0x10; ktaavg[2] = i16; // odd col, even row i16 = val & 0x0F; if(i16 > 0x07) i16 -= 0x10; ktaavg[3] = i16; // even col, even row for(int i = 0; i < 4; ++i) params.kv[i] = ktaavg[i] / div; val = CREG_VAL(REG_CPOFF); params.cpOffset[0] = (val & 0x03ff); if(params.cpOffset[0] > 0x1ff) params.cpOffset[0] -= 0x400; params.cpOffset[1] = val >> 10; if(params.cpOffset[1] > 0x1f) params.cpOffset[1] -= 0x40; params.cpOffset[1] += params.cpOffset[0]; val = ((CREG_VAL(REG_KTAVSCALE) & 0xF0) >> 4) + 8; i8 = (int8_t)(CREG_VAL(REG_KVTACP) & 0xFF); params.cpKta = (float)i8 / (1<> 8; i16 = CREG_VAL(REG_KVTACP) >> 8; if(i16 > 0x7F) i16 -= 0x100; params.cpKv = (float)i16 / (1< 0x7F) i16 -= 0x100; params.tgc = (float)i16; params.tgc /= 32.; #ifdef EBUG SEND("4 Tms="); printu(Tms); newline(); #endif val = (CREG_VAL(REG_SCALEACC)>>12); // alpha_scale_CP i16 = CREG_VAL(REG_ALPHA)>>10; // cp_P1_P0_ratio if(i16 > 0x1F) i16 -= 0x40; div = (float)(1<> 8); params.KsTa = (float)i8/(1<<13); div = 1<<((CREG_VAL(REG_CT34) & 0x0F) + 8); // kstoscale val = CREG_VAL(REG_KSTO12); i8 = (int8_t)(val & 0xFF); params.ksTo[0] = 273.15f * i8 / div; i8 = (int8_t)(val >> 8); params.ksTo[1] = 273.15f * i8 / div; val = CREG_VAL(REG_KSTO34); i8 = (int8_t)(val & 0xFF); params.ksTo[2] = 273.15f * i8 / div; i8 = (int8_t)(val >> 8); params.ksTo[3] = 273.15f * i8 / div; params.CT[0] = 0.f; // 0degr - between ranges 1 and 2 val = CREG_VAL(REG_CT34); mul = ((val & 0x3000)>>12)*10.f; // step params.CT[1] = ((val & 0xF0)>>4)*mul; // CT3 - between ranges 2 and 3 params.CT[2] = ((val & 0x0F00) >> 8)*mul + params.CT[1]; // CT4 - between ranges 3 and 4 params.alphacorr[0] = 1.f/(1.f + params.ksTo[0] * 40.f); params.alphacorr[1] = 1.f; params.alphacorr[2] = (1.f + params.ksTo[2] * params.CT[1]); params.alphacorr[3] = (1.f + params.ksTo[3] * (params.CT[2] - params.CT[1])) * params.alphacorr[2]; // Don't forget to check 'outlier' flags for wide purpose #ifdef EBUG SEND("end Tms="); printu(Tms); NL(); #endif return TRUE; } /** * @brief process_subpage - calculate all parameters from `dataarray` into `mlx_image` */ static void process_subpage(){ DBG("process_subpage()"); SEND("Tms="); printu(Tms); newline(); SEND("subpage="); printu(subpageno); newline(); (void)subpageno; (void)simpleimage; for(int i = 0; i < MLX_W; ++i){ printi((int8_t)dataarray[i]); bufputchar(' '); } newline(); SEND("072a="); printuhex(IMD_VAL(REG_IVDDPIX)); SEND("\n0720="); printuhex(IMD_VAL(REG_ITAPTAT)); SEND("\n0700="); printuhex(IMD_VAL(REG_ITAVBE)); SEND("\n070a="); printuhex(IMD_VAL(REG_IGAIN)); newline(); int16_t i16a = (int16_t)IMD_VAL(REG_IVDDPIX); float dvdd = i16a - params.vdd25; dvdd = dvdd / params.kVdd; SEND("Vd="); float2str(dvdd+3.3f, 2); newline(); i16a = (int16_t)IMD_VAL(REG_ITAPTAT); int16_t i16b = (int16_t)IMD_VAL(REG_ITAVBE); float dTa = (float)i16a / (i16a * params.alphaPTAT + i16b); // vptatart dTa *= (float)(1<<18); dTa = (dTa / (1 + params.KvPTAT*dvdd) - params.vPTAT25); dTa = dTa / params.KtPTAT; // without 25degr - Ta0 SEND("Ta="); float2str(dTa+25., 2); newline(); i16a = (int16_t)IMD_VAL(REG_IGAIN); float Kgain = params.gainEE / (float)i16a; SEND("Kgain="); float2str(Kgain, 2); newline(); // now make first approximation to image uint16_t pixno = 0; // current pixel number - for indexing in parameters etc for(int row = 0; row < MLX_H; ++row){ int idx = (row&1)<<1; // index for params.kv for(int col = 0; col < MLX_W; ++col, ++pixno){ uint8_t sp = (row&1)^(col&1); // subpage of current pixel if(sp != subpageno) continue; register float curval = (float)((int16_t)dataarray[pixno]) * Kgain; // gain compensation curval -= params.offset[pixno] * (1.f + params.kta[pixno]*dTa) * (1.f + params.kv[idx|(col&1)]*dvdd); // add offset float IRcompens = curval; // IR_compensated curval -= params.cpOffset[subpageno] * (1.f - params.cpKta * dTa) * (1.f + params.cpKv * dvdd); // CP if(!simpleimage){ curval = IRcompens - params.tgc * curval; // IR gradient compens float alphaComp = params.alpha[pixno] - params.tgc * params.cpAlpha[subpageno]; alphaComp /= 1.f + params.KsTa * dTa; // calculate To for basic range float Tar = dTa + 273.15f + 25.f; Tar = Tar*Tar*Tar*Tar; float ac3 = alphaComp*alphaComp*alphaComp; float Sx = ac3*IRcompens + alphaComp*ac3*Tar; Sx = params.KsTa * sqrtf(sqrtf(Sx)); float To = IRcompens / (alphaComp * (1.f - params.ksTo[1]) + Sx) + Tar; curval = sqrtf(sqrtf(To)) - 273.15; // To // TODO: extended } mlx_image[pixno] = curval; } } SEND("Tms="); printu(Tms); newline(); NL(); } // start image acquiring for next subpage static int startima(){ DBG("startima()"); // write `overwrite` flag twice if(!write_reg(REG_CONTROL, reg_control_val[subpageno]) || !write_reg(REG_STATUS, REG_STATUS_OVWEN) || !write_reg(REG_STATUS, REG_STATUS_OVWEN)) return FALSE; return TRUE; } /** * @brief parse_buffer - swap bytes in `dataarray` (after receiving or before transmitting data) * static void parse_buffer(){ uint16_t *ptr = dataarray; DBG("parse_buffer()"); for(uint16_t i = 0; i < portionlen; ++i, ++ptr){ *ptr = __REV16(*ptr); #if 0 printu(i); addtobuf(" "); printuhex(*ptr); newline(); #endif } #if 0 sendbuf(); #endif }*/ /** * @brief mlx90640_process - main finite-state machine */ void mlx90640_process(){ #define chstate(s) do{errctr = 0; Tlast = Tms; mlx_state = s;}while(0) #define chkerr() do{if(++errctr > MLX_MAXERR_COUNT){chstate(M_ERROR); DBG("-> M_ERROR");}}while(0) #define chktmout() do{if(Tms - Tlast > MLX_TIMEOUT){chstate(M_ERROR); DBG("Timeout! -> M_ERROR"); }}while(0) static int errctr = 0; static uint32_t Tlast = 0; uint16_t reg, N; /* uint8_t gotdata = 0; if(i2cDMAr == I2C_DMA_READY){ // convert received data into little-endian i2cDMAr = I2C_DMA_RELAX; parse_buffer(); gotdata = 1; }*/ switch(mlx_state){ case M_FIRSTSTART: // init working mode by request if(write_reg(REG_CONTROL, reg_control_val[0]) && read_reg(REG_CONTROL, ®)){ SEND("REG_CTRL="); printuhex(reg); NL(); if(read_reg(REG_STATUS, ®)){ SEND("REG_STATUS="); printuhex(reg); NL();} /* #define PARTD 512 if(read_data_dma(REG_CALIDATA, PARTD)){ chstate(M_READCONF); DBG("-> M_READCONF"); }else chkerr(); */ N = REG_CALIDATA_LEN; if(read_data(REG_CALIDATA, &N)){ chstate(M_READCONF); DBG("-> M_READCONF"); }else chkerr(); }else chkerr(); break; case M_READCONF: //if(gotdata){ // calculate calibration parameters /* uint16_t *d = &dataarray[PARTD]; for(uint16_t r = REG_CALIDATA+PARTD; r < REG_CALIDATA + REG_CALIDATA_LEN; ++r){ if(!read_reg(r, d++)){ chstate(M_FIRSTSTART); DBG("can't read all confdata -> M_FIRSTSTART"); return; } }*/ if(get_parameters()){ chstate(M_RELAX); DBG("-> M_RELAX"); }else{ // error -> go to M_FIRSTSTART again chstate(M_FIRSTSTART); DBG("-> M_FIRSTSTART"); } //}else chktmout(); break; case M_STARTIMA: if(startima()){ chstate(M_PROCESS); DBG("-> M_PROCESS"); }else{ chstate(M_ERROR); DBG("can't start subpage -> M_ERROR"); } break; case M_PROCESS: if(read_reg(REG_STATUS, ®)){ if(reg & REG_STATUS_NEWDATA){ if(subpageno != (reg & REG_STATUS_SPNO)){ chstate(M_ERROR); DBG("wrong subpage number -> M_ERROR"); }else{ // all OK, run image reading write_reg(REG_STATUS, 0); // clear rdy bit /* if(read_data_dma(REG_IMAGEDATA, PARTD)){ chstate(M_READOUT); DBG("-> M_READOUT"); }else chkerr(); */ N = MLX_PIXARRSZ; if(read_data(REG_IMAGEDATA, &N)){ chstate(M_READOUT); DBG("-> M_READOUT"); }else chkerr(); } }else chktmout(); }else chkerr(); break; case M_READOUT: //if(gotdata){ /* uint16_t *d = &dataarray[PARTD]; for(uint16_t r = REG_IMAGEDATA+PARTD; r < REG_IMAGEDATA+MLX_PIXARRSZ; ++r){ if(!read_reg(r, d++)){ chstate(M_ERROR); DBG("can't read all confdata -> M_ERROR"); return; } }*/ process_subpage(); subpageno = !subpageno; DBG("Subpage ready"); chstate(M_RELAX); /* if(++subpageno > 1){ // image ready subpageno = 0; chstate(M_RELAX); DBG("Image READY!"); }else{ chstate(M_STARTIMA); DBG("-> M_STARTIMA"); }*/ //}else chktmout(); break; case M_POWERON: if(Tms - Tlast > MLX_POWON_WAIT){ if(params.kVdd == 0){ // get all parameters chstate(M_FIRSTSTART); DBG("M_FIRSTSTART"); }else{ // rewrite settings register if(write_reg(REG_CONTROL, reg_control_val[0])){ chstate(M_RELAX); DBG("-> M_RELAX"); }else chkerr(); } } break; case M_POWEROFF1: MLXPOW_OFF(); chstate(M_POWEROFF); DBG("-> M_POWEROFF"); break; case M_POWEROFF: if(Tms - Tlast > MLX_POWOFF_WAIT){ MLXPOW_ON(); chstate(M_POWERON); DBG("-> M_POWERON"); } break; default: break; } } void mlx90640_restart(){ DBG("restart"); mlx_state = M_POWEROFF1; } // if state of MLX allows, make an image else return error // @param simple ==1 for simplest image processing (without T calibration) int mlx90640_take_image(uint8_t simple){ simpleimage = simple; if(mlx_state == M_ERROR){ DBG("Restart I2C"); i2c_setup(i2cDMAr != I2C_DMA_NOTINIT); } else if(mlx_state != M_RELAX) return FALSE; if(params.kVdd == 0){ // no parameters -> make first run mlx_state = M_FIRSTSTART; DBG("no params -> M_FIRSTSTART"); return TRUE; } //subpageno = 0; mlx_state = M_STARTIMA; DBG("-> M_STARTIMA"); return TRUE; }