/* * This file is part of the windshield project. * Copyright 2024 Edward V. Emelianov . * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #include "adc.h" uint16_t ADC_array[NUMBER_OF_ADC_CHANNELS*9]; void adc_setup(){ uint32_t ctr = 0; // Enable clocking RCC->APB2ENR |= RCC_APB2ENR_ADC1EN; RCC->AHBENR |= RCC_AHBENR_DMA1EN; __DSB(); // DMA configuration DMA1_Channel1->CPAR = (uint32_t) (&(ADC1->DR)); DMA1_Channel1->CMAR = (uint32_t)(ADC_array); DMA1_Channel1->CNDTR = NUMBER_OF_ADC_CHANNELS * 9; DMA1_Channel1->CCR = DMA_CCR_MINC | DMA_CCR_MSIZE_0 | DMA_CCR_PSIZE_0 | DMA_CCR_CIRC | DMA_CCR_PL | DMA_CCR_EN; RCC->CFGR = (RCC->CFGR & ~(RCC_CFGR_ADCPRE)) | RCC_CFGR_ADCPRE_DIV8; // ADC clock = RCC / 8 // sampling time - 239.5 cycles for channels 0, 16 and 17 ADC1->SMPR2 = ADC_SMPR2_SMP0; ADC1->SMPR1 = ADC_SMPR1_SMP16 | ADC_SMPR1_SMP17; // sequence order: 0 -> 16 -> 17 ADC1->SQR3 = (0 << 0) | (16<<5) | (17 << 10); ADC1->SQR1 = (NUMBER_OF_ADC_CHANNELS - 1) << 20; // amount of conversions ADC1->CR1 = ADC_CR1_SCAN; // scan mode // DMA, continuous mode; enable vref & Tsens; enable SWSTART as trigger ADC1->CR2 = ADC_CR2_DMA | ADC_CR2_TSVREFE | ADC_CR2_CONT | ADC_CR2_EXTSEL | ADC_CR2_EXTTRIG; // wake up ADC ADC1->CR2 |= ADC_CR2_ADON; __DSB(); // wait for Tstab - at least 1us while(++ctr < 0xff) nop(); // calibration ADC1->CR2 |= ADC_CR2_RSTCAL; ctr = 0; while((ADC1->CR2 & ADC_CR2_RSTCAL) && ++ctr < 0xfffff); ADC1->CR2 |= ADC_CR2_CAL; ctr = 0; while((ADC1->CR2 & ADC_CR2_CAL) && ++ctr < 0xfffff); // clear possible errors and start ADC1->SR = 0; ADC1->CR2 |= ADC_CR2_SWSTART; } /** * @brief getADCval - calculate median value for `nch` channel * @param nch - number of channel * @return */ uint16_t getADCval(int nch){ int i, addr = nch; #define PIX_SORT(a,b) { if ((a)>(b)) PIX_SWAP((a),(b)); } #define PIX_SWAP(a,b) { register uint16_t temp=(a);(a)=(b);(b)=temp; } uint16_t p[9]; for(i = 0; i < 9; ++i, addr += NUMBER_OF_ADC_CHANNELS){ // first we should prepare array for optmed p[i] = ADC_array[addr]; } PIX_SORT(p[1], p[2]) ; PIX_SORT(p[4], p[5]) ; PIX_SORT(p[7], p[8]) ; PIX_SORT(p[0], p[1]) ; PIX_SORT(p[3], p[4]) ; PIX_SORT(p[6], p[7]) ; PIX_SORT(p[1], p[2]) ; PIX_SORT(p[4], p[5]) ; PIX_SORT(p[7], p[8]) ; PIX_SORT(p[0], p[3]) ; PIX_SORT(p[5], p[8]) ; PIX_SORT(p[4], p[7]) ; PIX_SORT(p[3], p[6]) ; PIX_SORT(p[1], p[4]) ; PIX_SORT(p[2], p[5]) ; PIX_SORT(p[4], p[7]) ; PIX_SORT(p[4], p[2]) ; PIX_SORT(p[6], p[4]) ; PIX_SORT(p[4], p[2]) ; return p[4]; #undef PIX_SORT #undef PIX_SWAP } // get voltage @input nch (1/100V) uint32_t getADCvoltage(int nch){ uint32_t v = getADCval(nch); v *= getVdd(); v /= 0xfff; // 12bit ADC return v; } // return MCU temperature (degrees of celsius * 10) int32_t getMCUtemp(){ // Temp = (V25 - Vsense)/Avg_Slope + 25 // V_25 = 1.45V, Slope = 4.3e-3 int32_t Vsense = getVdd() * getADCval(CHTSENS); int32_t temperature = 593920 - Vsense; // 593920 == 145*4096 temperature /= 172; // == /(4096*10*4.3e-3), 10 - to convert from *100 to *10 temperature += 250; return(temperature); } // return Vdd * 100 (V) uint32_t getVdd(){ uint32_t vdd = 120 * 4096; // 1.2V vdd /= getADCval(CHVDD); return vdd; }