/* * This file is part of the multistepper project. * Copyright 2023 Edward V. Emelianov . * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #include #include "hardware.h" #include "proto.h" extern volatile uint32_t Tms; #define MAXBUFLEN (8) // Rx timeout, ms #define PDNUART_TIMEOUT (20) // buffers format: 0 - sync+reserved, 1 - address (0..3 - slave, 0xff - master) // 2 - register<<1 | RW, 3 - CRC (r) or [ 3..6 - MSB data, 7 - CRC ] // buf[0] - USART2, buf[1] - USART3 static uint8_t inbuf[2][MAXBUFLEN], outbuf[2][MAXBUFLEN]; static uint8_t Taccess[2] = {0}; // last access time static int curslaveaddr[2] = {-1, -1}; // current slave address for each USART (0..3) static uint8_t notfound = 0; // not found mask (LSB - 0, MSB - 7) static uint8_t readrq[2] = {0}; // ==1 for read request (after send wait to read) // UART states typedef enum{ PDU_IDLE, PDU_TX, PDU_TXREADY, PDU_RX, PDU_RXREADY } pdnuart_state; static pdnuart_state state[2] = {PDU_IDLE, PDU_IDLE}; // datalen == 3 for read request or 7 for writing static void calcCRC(int no, int datalen){ uint8_t crc = 0; for(int i = 0; i < datalen; ++i){ uint8_t currentByte = outbuf[no][i]; for(int j = 0; j < 8; ++j){ if((crc >> 7) ^ (currentByte & 0x01)) crc = (crc << 1) ^ 0x07; else crc <<= 1; currentByte = currentByte >> 1; } } outbuf[no][datalen] = crc; } static volatile DMA_Channel_TypeDef *TxDMA[2] = {DMA1_Channel7, DMA1_Channel2}; static volatile DMA_Channel_TypeDef *RxDMA[2] = {DMA1_Channel6, DMA1_Channel3}; static volatile USART_TypeDef *USART[2] = {USART2, USART3}; static void setup_usart(int no){ USART[no]->ICR = 0xffffffff; // clear all flags TxDMA[no]->CCR = 0; TxDMA[no]->CPAR = (uint32_t) &USART[no]->TDR; // periph TxDMA[no]->CCR |= DMA_CCR_MINC | DMA_CCR_DIR | DMA_CCR_TCIE; // 8bit, mem++, mem->per, transcompl irq RxDMA[no]->CCR = 0; RxDMA[no]->CPAR = (uint32_t) &USART[no]->RDR; // periph RxDMA[no]->CCR |= DMA_CCR_MINC | DMA_CCR_TCIE; // 8bit, mem++, per->mem, transcompl irq USART[no]->BRR = 72000000 / 256000; // 256 kbaud USART[no]->CR3 = USART_CR3_DMAT | USART_CR3_DMAR; // enable DMA Tx/Rx USART[no]->CR1 = USART_CR1_TE | USART_CR1_RE | USART_CR1_UE; // 1start,8data,nstop; enable Rx,Tx,USART uint32_t tmout = 16000000; while(!(USART[no]->ISR & USART_ISR_TC)){if(--tmout == 0) break;} // polling idle frame Transmission USART[no]->ICR = 0xffffffff; // clear all flags again } // USART2 (ch0..3): DMA1ch6 (Rx), DMA1_ch7 (Tx) // USART3 (ch4..7): DMA1ch3 (Rx), DMA1_ch2 (Tx) // pins are setting up in `hardware.c` void pdnuart_setup(){ RCC->APB1ENR |= RCC_APB1ENR_USART2EN | RCC_APB1ENR_USART3EN; RCC->AHBENR |= RCC_AHBENR_DMA1EN; setup_usart(0); setup_usart(1); NVIC_EnableIRQ(DMA1_Channel2_IRQn); NVIC_EnableIRQ(DMA1_Channel3_IRQn); NVIC_EnableIRQ(DMA1_Channel6_IRQn); NVIC_EnableIRQ(DMA1_Channel7_IRQn); } static int rwreg(uint8_t motorno, uint8_t reg, uint32_t data, int w){ if(motorno >= MOTORSNO || reg & 0x80) return FALSE; int no = motorno >> 2; if(state[no] != PDU_IDLE) return FALSE; outbuf[no][0] = 0xa0; outbuf[no][1] = curslaveaddr[no] = motorno - (no << 2); outbuf[no][2] = reg << 1; int nbytes = 3; if(w){ outbuf[no][2] |= 1; for(int i = 6; i > 2; --i){ outbuf[no][i] = data & 0xff; data >>= 8; } nbytes = 7; readrq[no] = 0; }else{ readrq[no] = 1; } calcCRC(no, nbytes); TxDMA[no]->CMAR = (uint32_t) outbuf[no]; TxDMA[no]->CNDTR = nbytes + 1; TxDMA[no]->CCR |= DMA_CCR_EN; // start transmission state[no] = PDU_TX; Taccess[no] = Tms; return TRUE; } // return FALSE if failed int pdnuart_writereg(uint8_t motorno, uint8_t reg, uint32_t data){ return rwreg(motorno, reg, data, 1); } // return FALSE if failed int pdnuart_readreg(uint8_t motorno, uint8_t reg){ return rwreg(motorno, reg, 0, 0); } static void disableDMA(int no){ TxDMA[no]->CCR &= ~DMA_CCR_EN; RxDMA[no]->CCR &= ~DMA_CCR_EN; readrq[no] = 0; state[no] = PDU_IDLE; } static void parseRx(int no){ USB_sendstr("Got from "); USB_putbyte('#'); printu(curslaveaddr[no] + no*4); USB_sendstr(": "); for(int i = 0; i < 8; ++i){ printuhex(inbuf[no][i]); USB_putbyte(' '); } newline(); } void pdnuart_poll(){ for(int i = 0; i < 2; ++i){ int showno = 0; uint32_t time = Tms - Taccess[i]; switch(state[i]){ case PDU_TX: if(time > PDNUART_TIMEOUT){ USB_sendstr("PDN/UART timeout: Tx problem "); showno = 1; disableDMA(i); } break; case PDU_TXREADY: USB_sendstr("Tx ready "); showno = 1; break; case PDU_RX: if(time > PDNUART_TIMEOUT){ USB_sendstr("PDN/UART timeout: no answer "); notfound |= 1 << (curslaveaddr[i] + 4*i); showno = 1; disableDMA(i); } break; case PDU_RXREADY: parseRx(i); state[i] = PDU_IDLE; // DMA already turned off break; default: // IDLE return; } if(showno){ USB_putbyte('#'); printu(curslaveaddr[i] + 4*i); newline(); } } } // USART2 Tx complete -> prepare Rx void dma1_channel7_isr(){ DMA1_Channel7->CCR &= ~DMA_CCR_EN; DMA1->IFCR |= DMA_IFCR_CTCIF7; if(!readrq[0]){ // there was a setter state[0] = PDU_TXREADY; return; } DMA1_Channel6->CMAR = (uint32_t) inbuf[0]; DMA1_Channel6->CCR |= DMA_CCR_EN; DMA1_Channel6->CNDTR = MAXBUFLEN; state[0] = PDU_RX; Taccess[0] = Tms; } // USART3 Tx complete -> prepare Rx void dma1_channel2_isr(){ DMA1_Channel2->CCR &= ~DMA_CCR_EN; DMA1->IFCR |= DMA_IFCR_CTCIF2; if(!readrq[1]){ // there was a setter state[1] = PDU_TXREADY; return; } DMA1_Channel3->CMAR = (uint32_t) inbuf[1]; DMA1_Channel3->CCR |= DMA_CCR_EN; DMA1_Channel3->CNDTR = MAXBUFLEN; state[1] = PDU_RX; Taccess[1] = Tms; } // USART2 Rx complete -> set flag void dma1_channel6_isr(){ DMA1_Channel6->CCR &= ~DMA_CCR_EN; DMA1->IFCR |= DMA_IFCR_CTCIF6; state[0] = PDU_RXREADY; } // USART3 Rx complete -> set flag void dma1_channel3_isr(){ DMA1_Channel3->CCR &= ~DMA_CCR_EN; DMA1->IFCR |= DMA_IFCR_CTCIF3; state[1] = PDU_RXREADY; }