/* * This file is part of the Chiller project. * Copyright 2018 Edward V. Emelianov . * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #include "adc.h" #include "effects.h" #include "hardware.h" #include "usart.h" uint32_t sg90step = SG90DEFSTEP; static inline void iwdg_setup(){ /* Enable the peripheral clock RTC */ /* (1) Enable the LSI (40kHz) */ /* (2) Wait while it is not ready */ RCC->CSR |= RCC_CSR_LSION; /* (1) */ while((RCC->CSR & RCC_CSR_LSIRDY) != RCC_CSR_LSIRDY); /* (2) */ /* Configure IWDG */ /* (1) Activate IWDG (not needed if done in option bytes) */ /* (2) Enable write access to IWDG registers */ /* (3) Set prescaler by 64 (1.6ms for each tick) */ /* (4) Set reload value to have a rollover each 1s */ /* (5) Check if flags are reset */ /* (6) Refresh counter */ IWDG->KR = IWDG_START; /* (1) */ IWDG->KR = IWDG_WRITE_ACCESS; /* (2) */ IWDG->PR = IWDG_PR_PR_1; /* (3) */ IWDG->RLR = 625; /* (4) */ while(IWDG->SR); /* (5) */ IWDG->KR = IWDG_REFRESH; /* (6) */ } static inline void adc_setup(){ uint16_t ctr = 0; // 0xfff0 - more than 1.3ms // Enable clocking /* (1) Enable the peripheral clock of the ADC */ /* (2) Start HSI14 RC oscillator */ /* (3) Wait HSI14 is ready */ RCC->APB2ENR |= RCC_APB2ENR_ADC1EN; /* (1) */ RCC->CR2 |= RCC_CR2_HSI14ON; /* (2) */ while ((RCC->CR2 & RCC_CR2_HSI14RDY) == 0 && ++ctr < 0xfff0){}; /* (3) */ // calibration /* (1) Ensure that ADEN = 0 */ /* (2) Clear ADEN */ /* (3) Launch the calibration by setting ADCAL */ /* (4) Wait until ADCAL=0 */ if ((ADC1->CR & ADC_CR_ADEN) != 0){ /* (1) */ ADC1->CR &= (uint32_t)(~ADC_CR_ADEN); /* (2) */ } ADC1->CR |= ADC_CR_ADCAL; /* (3) */ ctr = 0; // ADC calibration time is 5.9us while ((ADC1->CR & ADC_CR_ADCAL) != 0 && ++ctr < 0xfff0){}; /* (4) */ // enable ADC ctr = 0; do{ ADC1->CR |= ADC_CR_ADEN; }while ((ADC1->ISR & ADC_ISR_ADRDY) == 0 && ++ctr < 0xfff0); // configure ADC /* (1) Select HSI14 by writing 00 in CKMODE (reset value) */ /* (2) Select the continuous mode */ /* (3) Select CHSEL0..3 - ADC inputs, 16,17 - t. sensor and vref */ /* (4) Select a sampling mode of 111 i.e. 239.5 ADC clk to be greater than 17.1us */ /* (5) Wake-up the VREFINT and Temperature sensor (only for VBAT, Temp sensor and VRefInt) */ // ADC1->CFGR2 &= ~ADC_CFGR2_CKMODE; /* (1) */ ADC1->CFGR1 |= ADC_CFGR1_CONT; /* (2)*/ ADC1->CHSELR = ADC_CHSELR_CHSEL0 | ADC_CHSELR_CHSEL1 | ADC_CHSELR_CHSEL2 | ADC_CHSELR_CHSEL3 | ADC_CHSELR_CHSEL16 | ADC_CHSELR_CHSEL17; /* (3)*/ ADC1->SMPR |= ADC_SMPR_SMP_0 | ADC_SMPR_SMP_1 | ADC_SMPR_SMP_2; /* (4) */ ADC->CCR |= ADC_CCR_TSEN | ADC_CCR_VREFEN; /* (5) */ // configure DMA for ADC // DMA for AIN /* (1) Enable the peripheral clock on DMA */ /* (2) Enable DMA transfer on ADC and circular mode */ /* (3) Configure the peripheral data register address */ /* (4) Configure the memory address */ /* (5) Configure the number of DMA tranfer to be performs on DMA channel 1 */ /* (6) Configure increment, size, interrupts and circular mode */ /* (7) Enable DMA Channel 1 */ RCC->AHBENR |= RCC_AHBENR_DMA1EN; /* (1) */ ADC1->CFGR1 |= ADC_CFGR1_DMAEN | ADC_CFGR1_DMACFG; /* (2) */ DMA1_Channel1->CPAR = (uint32_t) (&(ADC1->DR)); /* (3) */ DMA1_Channel1->CMAR = (uint32_t)(ADC_array); /* (4) */ DMA1_Channel1->CNDTR = NUMBER_OF_ADC_CHANNELS * 9; /* (5) */ DMA1_Channel1->CCR |= DMA_CCR_MINC | DMA_CCR_MSIZE_0 | DMA_CCR_PSIZE_0 | DMA_CCR_CIRC; /* (6) */ DMA1_Channel1->CCR |= DMA_CCR_EN; /* (7) */ ADC1->CR |= ADC_CR_ADSTART; /* start the ADC conversions */ } /** * @brief gpio_setup - setup GPIOs for external IO * GPIO pinout: * PF1 - open drain - ext. LED/laser * PA0..PA3 - ADC_IN0..3 * PA4 - open drain - onboard LED (always ON when board works) * PB1, PA6, PA7 - Alt. F. - PWM outputs * Registers * MODER - input/output/alternate/analog (2 bit) * OTYPER - 0 pushpull, 1 opendrain * OSPEEDR - x0 low, 01 medium, 11 high * PUPDR - no/pullup/pulldown/resr (2 bit) * IDR - input * ODR - output * BSRR - 0..15 - set, 16..31 - reset * BRR - 0..15 - reset * AFRL/AFRH - alternate functions (4 bit, AF: 0..7); L - AFR0..7, H - ARF8..15 */ static inline void gpio_setup(){ // Enable clocks to the GPIO subsystems RCC->AHBENR |= RCC_AHBENR_GPIOAEN | RCC_AHBENR_GPIOBEN | RCC_AHBENR_GPIOFEN; // PA6/7 - AF; PB1 - AF GPIOA->MODER = GPIO_MODER_MODER6_AF | GPIO_MODER_MODER7_AF | GPIO_MODER_MODER0_AI | GPIO_MODER_MODER1_AI | GPIO_MODER_MODER2_AI | GPIO_MODER_MODER3_AI | GPIO_MODER_MODER4_O; GPIOA->OTYPER = GPIO_OTYPER_OT_4; GPIOB->MODER = GPIO_MODER_MODER1_AF; //RCC->APB2ENR |= RCC_APB2ENR_SYSCFGEN; // enable syscfg clock for EXTI GPIOF->ODR = 1<<1; GPIOF->MODER = GPIO_MODER_MODER1_O; GPIOF->OTYPER = GPIO_OTYPER_OT_1; // alternate functions: // PA6 - TIM3_CH1, PA7 - TIM3_CH2, PB1 - TIM3_CH4 (all - AF1) GPIOA->AFR[0] = (GPIOA->AFR[0] &~ (GPIO_AFRL_AFRL6 | GPIO_AFRL_AFRL7)) \ | (1 << (6 * 4)) | (1 << (7 * 4)); GPIOB->AFR[0] = (GPIOB->AFR[0] &~ (GPIO_AFRL_AFRL1)) \ | (1 << (1 * 4)) ; } // change period of PWM // MAX freq - 200Hz!!! void setTIM3T(uint32_t T){ if(T < 1000 || T > 65536) return; TIM3->ARR = T - 1; // step = ampl / freq(Hz) * 3 sg90step = SG90_AMPL * T; sg90step >>= 18; // /262144 } static inline void timers_setup(){ // timer 3 ch1, 2, 4 PWM for three servos RCC->APB1ENR |= RCC_APB1ENR_TIM3EN; // PWM mode 1 (active -> inactive) on all three channels TIM3->CCMR1 = TIM_CCMR1_OC1M_2 | TIM_CCMR1_OC1M_1 | TIM_CCMR1_OC2M_2 | TIM_CCMR1_OC2M_1; TIM3->CCMR2 = TIM_CCMR2_OC4M_2 | TIM_CCMR2_OC4M_1; // frequency TIM3->PSC = 47; // 1MHz -> 1us per tick // ARR for 8-bit PWM TIM3->ARR = 19999; // 50Hz // enable main output TIM3->BDTR |= TIM_BDTR_MOE; // enable PWM output TIM3->CCER = TIM_CCER_CC1E | TIM_CCER_CC2E | TIM_CCER_CC4E; TIM3->DIER = TIM_DIER_UIE; //TIM_DIER_CC1IE | TIM_DIER_CC2IE | TIM_DIER_CC4IE; // enable timer & ARR buffering TIM3->CR1 |= TIM_CR1_CEN | TIM_CR1_ARPE; RCC->AHBENR |= RCC_AHBENR_DMA1EN; // DMA for more effects (channel 3 -> TIM3_UP) DMA1_Channel3->CPAR = (uint32_t)(&(TIM3->DMAR)); // each writing to DMAR will change next register // memsiz 16bit, psiz 32bit, memincrement, from memory, circulate DMA1_Channel3->CCR |= DMA_CCR_MSIZE_0 | DMA_CCR_PSIZE_1 | DMA_CCR_MINC | DMA_CCR_DIR | DMA_CCR_CIRC; TIM3->DCR = (1 << 8) | // DBL=1 -- two transfers (((uint32_t)&TIM3->CCR1 - (uint32_t)&TIM3->CR1) >> 2); // reg = (DBA + TIM3->CR1)/4 NVIC_EnableIRQ(TIM3_IRQn); } void hw_setup(){ sysreset(); gpio_setup(); adc_setup(); timers_setup(); USART1_config(); iwdg_setup(); } static uint32_t target_Val[3] = {SG90_MIDPULSE, SG90_MIDPULSE, SG90_MIDPULSE}; static uint32_t target_Speed[3] = {SG90DEFSTEP, SG90DEFSTEP, SG90DEFSTEP}; static uint8_t onpos[3] = {0,0,0}; volatile uint32_t *addr[3] = {&TIM3->CCR1, &TIM3->CCR2, &TIM3->CCR4}; int32_t getPWM(int nch){ return *addr[nch]; } // return current value int32_t setPWM(int nch, uint32_t val, uint32_t speed){ if(nch < 0 || nch > 2) return 0; if(speed > 0){ if(speed > SG90_STEP) speed = SG90_STEP; target_Speed[nch] = speed; } uint8_t ch = 1; if(val >= SG90_MINPULSE && val <= SG90_MAXPULSE) target_Val[nch] = val; else if(val == 0) target_Val[nch] = SG90_MINPULSE; else if(val == 1) target_Val[nch] = SG90_MAXPULSE; else if(val == 2) target_Val[nch] = SG90_MIDPULSE; else ch = 0; if(ch){ onpos[nch] = 0; } return *addr[nch]; } uint8_t onposition(int nch){ return onpos[nch]; } static void chkPWM(int n){ if(n < 0 || n > 2) return; uint32_t cur = *addr[n], tg = target_Val[n]; if(cur == tg){ onpos[n] = 1; return; } uint32_t diff = tg - cur; int sign = 1; if(cur > tg){ diff = cur - tg; sign = -1; } if(diff > target_Speed[n]) diff = target_Speed[n]; *addr[n] = cur + sign*diff; } void tim3_isr(){ /* if(TIM3->SR & TIM_SR_CC1IF){ // 1st channel chkPWM(0); } if(TIM3->SR & TIM_SR_CC2IF){ // 2nd channel chkPWM(1); } if(TIM3->SR & TIM_SR_CC4IF){ // 3rd channel chkPWM(2); }*/ if(TIM3->SR & TIM_SR_UIF){ if(!dma_eff){ chkPWM(0); chkPWM(1); chkPWM(2); } } TIM3->SR = 0; } /* void exti0_1_isr(){ if (EXTI->PR & EXTI_PR_PR1){ EXTI->PR |= EXTI_PR_PR1; // Clear the pending bit ; } } */