/* * This file is part of the Chiller project. * Copyright 2018 Edward V. Emelianov . * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #include "adc.h" /** * @brief ADC_array - array for ADC channels with median filtering: * 0..3 - external NTC * 4 - internal Tsens * 5 - Vref */ uint16_t ADC_array[NUMBER_OF_ADC_CHANNELS*9]; /** * @brief getADCval - calculate median value for `nch` channel * @param nch - number of channel * @return */ uint16_t getADCval(int nch){ int i, addr = nch; register uint16_t temp; #define PIX_SORT(a,b) { if ((a)>(b)) PIX_SWAP((a),(b)); } #define PIX_SWAP(a,b) { temp=(a);(a)=(b);(b)=temp; } uint16_t p[9]; for(i = 0; i < 9; ++i, addr += NUMBER_OF_ADC_CHANNELS) // first we should prepare array for optmed p[i] = ADC_array[addr]; PIX_SORT(p[1], p[2]) ; PIX_SORT(p[4], p[5]) ; PIX_SORT(p[7], p[8]) ; PIX_SORT(p[0], p[1]) ; PIX_SORT(p[3], p[4]) ; PIX_SORT(p[6], p[7]) ; PIX_SORT(p[1], p[2]) ; PIX_SORT(p[4], p[5]) ; PIX_SORT(p[7], p[8]) ; PIX_SORT(p[0], p[3]) ; PIX_SORT(p[5], p[8]) ; PIX_SORT(p[4], p[7]) ; PIX_SORT(p[3], p[6]) ; PIX_SORT(p[1], p[4]) ; PIX_SORT(p[2], p[5]) ; PIX_SORT(p[4], p[7]) ; PIX_SORT(p[4], p[2]) ; PIX_SORT(p[6], p[4]) ; PIX_SORT(p[4], p[2]) ; return p[4]; #undef PIX_SORT #undef PIX_SWAP } // return MCU temperature (degrees of celsius * 10) int32_t getMCUtemp(){ getVdd(); // make correction on Vdd value // int32_t temperature = (int32_t)ADC_array[4] * VddValue / 330; int32_t ADval = getADCval(4); int32_t temperature = (int32_t) *TEMP30_CAL_ADDR - ADval; temperature *= (int32_t)(1100 - 300); temperature /= (int32_t)(*TEMP30_CAL_ADDR - *TEMP110_CAL_ADDR); temperature += 300; return(temperature); } // return Vdd * 100 (V) uint32_t getVdd(){ uint32_t vdd = ((uint32_t) *VREFINT_CAL_ADDR) * (uint32_t)330; // 3.3V vdd /= getADCval(5); return vdd; } /** * @brief getNTC - return temperature of NTC (*10 degrC) * @param nch - NTC channel number (0..3) * @return */ int16_t getNTC(int nch){ #define NKNOTS (9) const int16_t ADU[NKNOTS] = {427, 468, 514, 623, 754, 910, 1087, 1295, 1538}; const int16_t T[NKNOTS] = {-200, -180, -159, -116, -72, -26, 23, 75, 132}; /* * coefficients: 0.050477 0.045107 0.039150 0.033639 0.029785 0.027017 0.024996 0.023522 0.022514 * use * [N D] = rat(K*10); printf("%d, ", N); printf("%d, ", D); */ const int16_t N[NKNOTS] = {1377, 295, 258, 110, 291, 77, 1657, 191, 120}; const int16_t D[NKNOTS] = {2728, 654, 659, 327, 977, 285, 6629, 812, 533}; if(nch < 0 || nch > 3) return -30000; uint16_t val = getADCval(nch); // find interval int idx = (NKNOTS+1)/2; // middle while(idx > 0 && idx < NKNOTS){ int16_t left = ADU[idx]; int half = idx / 2; if(val < left){ if(idx == 0) break; if(val > ADU[idx-1]){ // found --idx; break; } idx = half; }else{ if(idx == NKNOTS - 1) break; // more than max value if(val < ADU[idx+1]) break; // found idx += half; } } if(idx < 0) idx = 0; else if(idx > NKNOTS-1) idx = NKNOTS - 1; // T = Y0(idx) + K(idx) * (ADU - X0(idx)); int16_t valT = T[idx] + (N[idx]*(val - ADU[idx]))/D[idx]; #undef NKNOTS return valT; }