/* * geany_encoding=koi8-r * hardware.c - hardware-dependent macros & functions * * Copyright 2018 Edward V. Emelianov * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, * MA 02110-1301, USA. * */ #include "adc.h" #include "hardware.h" #include "proto.h" volatile uint32_t Cooler1RPM; // Cooler1 RPM counter by EXTI @PA7 buzzer_state buzzer = BUZZER_OFF; // buzzer state void adc_setup(){ uint16_t ctr = 0; // 0xfff0 - more than 1.3ms ADC1->CR &= ~ADC_CR_ADEN; DMA1_Channel1->CCR &= ~DMA_CCR_EN; RCC->APB2ENR |= RCC_APB2ENR_ADC1EN; // Enable the peripheral clock of the ADC RCC->CR2 |= RCC_CR2_HSI14ON; // Start HSI14 RC oscillator while ((RCC->CR2 & RCC_CR2_HSI14RDY) == 0 && ++ctr < 0xfff0){}; // Wait HSI14 is ready // calibration if(ADC1->CR & ADC_CR_ADEN){ // Ensure that ADEN = 0 ADC1->CR &= (uint32_t)(~ADC_CR_ADEN); // Clear ADEN } ADC1->CR |= ADC_CR_ADCAL; // Launch the calibration by setting ADCAL ctr = 0; // ADC calibration time is 5.9us while(ADC1->CR & ADC_CR_ADCAL && ++ctr < 0xfff0); // Wait until ADCAL=0 // enable ADC ctr = 0; do{ ADC1->CR |= ADC_CR_ADEN; }while((ADC1->ISR & ADC_ISR_ADRDY) == 0 && ++ctr < 0xfff0); // configure ADC ADC1->CFGR1 |= ADC_CFGR1_CONT; // Select the continuous mode ADC1->CHSELR = ADC_CHSELR_CHSEL0 | ADC_CHSELR_CHSEL1 | ADC_CHSELR_CHSEL2 | ADC_CHSELR_CHSEL3 | ADC_CHSELR_CHSEL4 | ADC_CHSELR_CHSEL5 | ADC_CHSELR_CHSEL16 | ADC_CHSELR_CHSEL17; // Select CHSEL0..5 - ADC inputs, 16,17 - t. sensor and vref ADC1->SMPR |= ADC_SMPR_SMP; // Select a sampling mode of 111 i.e. 239.5 ADC clk to be greater than 17.1us ADC->CCR |= ADC_CCR_TSEN | ADC_CCR_VREFEN; // Wake-up the VREFINT and Temperature sensor // configure DMA for ADC RCC->AHBENR |= RCC_AHBENR_DMA1EN; // Enable the peripheral clock on DMA ADC1->CFGR1 |= ADC_CFGR1_DMAEN | ADC_CFGR1_DMACFG; // Enable DMA transfer on ADC and circular mode DMA1_Channel1->CPAR = (uint32_t) (&(ADC1->DR)); // Configure the peripheral data register address DMA1_Channel1->CMAR = (uint32_t)(ADC_array); // Configure the memory address DMA1_Channel1->CNDTR = NUMBER_OF_ADC_CHANNELS * 9; // Configure the number of DMA tranfer to be performs on DMA channel 1 DMA1_Channel1->CCR |= DMA_CCR_MINC | DMA_CCR_MSIZE_0 | DMA_CCR_PSIZE_0 | DMA_CCR_CIRC; // Configure increment, size, interrupts and circular mode DMA1_Channel1->CCR |= DMA_CCR_EN; // Enable DMA Channel 1 ADC1->CR |= ADC_CR_ADSTART; // start the ADC conversions } static inline void gpio_setup(void){ RCC->AHBENR |= RCC_AHBENR_GPIOAEN | RCC_AHBENR_GPIOBEN | RCC_AHBENR_GPIOCEN; OFF(BUZZER); OFF(RELAY); OFF(COOLER0); OFF(COOLER1); // All outputs are pullups // PA0..5 - ADC, PA6, PA8..10 - timers (PA6, PA7 - pullup, PA7 - exti), PA14 - buzzer GPIOA->MODER = GPIO_MODER_MODER0_AI | GPIO_MODER_MODER1_AI | GPIO_MODER_MODER2_AI | GPIO_MODER_MODER3_AI | GPIO_MODER_MODER4_AI | GPIO_MODER_MODER5_AI | GPIO_MODER_MODER6_AF | GPIO_MODER_MODER8_AF | GPIO_MODER_MODER9_AF | GPIO_MODER_MODER10_AF| GPIO_MODER_MODER14_O; GPIOA->PUPDR = GPIO_PUPDR6_PU | GPIO_PUPDR7_PU; // EXTI @ PA7 SYSCFG->EXTICR[1] = SYSCFG_EXTICR2_EXTI7_PA; // PORTA for EXTI EXTI->IMR = EXTI_IMR_MR7; // select pin 7 EXTI->RTSR = EXTI_RTSR_TR7; // rising edge @ pin 7 NVIC_EnableIRQ(EXTI4_15_IRQn); // enable interrupt NVIC_SetPriority(EXTI4_15_IRQn, 4); // set low priority // PB4/5 - cooler, PB14/15 - buttons (pullup) GPIOB->MODER = GPIO_MODER_MODER4_O | GPIO_MODER_MODER5_O; GPIOB->PUPDR = GPIO_PUPDR14_PU | GPIO_PUPDR15_PU; // PC13 - relay GPIOC->MODER = GPIO_MODER_MODER13_O; /* Alternate functions: * PA6 - TIM3_CH1 AF1 * PA8 - TIM1_CH1 AF2 * PA9 - TIM1_CH2 AF2 * PA10 - TIM1_CH3 AF2 */ GPIOA->AFR[0] = (1 << (6*4)); GPIOA->AFR[1] = (2 << (0*4)) | (2 << (1*4)) | (2 << (2*4)); } static inline void timers_setup(){ // TIM1 channels 1..3 - PWM output RCC->APB2ENR |= RCC_APB2ENR_TIM1EN; // enable clocking TIM1->PSC = 19; // F=48/20 = 2.4MHz TIM1->ARR = 100; // PWM frequency = 2.4/101 = 23.76kHz // PWM mode 1 (OCxM = 110), preload enable TIM1->CCMR1 = TIM_CCMR1_OC1M_2 | TIM_CCMR1_OC1M_1 | TIM_CCMR1_OC1PE | TIM_CCMR1_OC2M_2 | TIM_CCMR1_OC2M_1 | TIM_CCMR1_OC2PE; TIM1->CCMR2 = TIM_CCMR2_OC3M_2 | TIM_CCMR2_OC3M_1 | TIM_CCMR2_OC3PE; TIM1->CCER = TIM_CCER_CC1E | TIM_CCER_CC2E | TIM_CCER_CC3E; // active high (CC1P=0), enable outputs TIM1->BDTR |= TIM_BDTR_MOE; // enable main output TIM1->CR1 |= TIM_CR1_CEN; // enable timer TIM1->EGR |= TIM_EGR_UG; // force update generation // TIM3 channel 1 - external counter on channel1 RCC->APB1ENR |= RCC_APB1ENR_TIM3EN; TIM3->SMCR = TIM_SMCR_TS_2 | TIM_SMCR_TS_0 | TIM_SMCR_SMS; // TS=101, SMS=111 - external trigger on input1 TIM3->CCMR1 = TIM_CCMR1_CC1S_0; // CC1 is input mapped on channel TI1 TIM3->CR1 = TIM_CR1_CEN; } void HW_setup(){ gpio_setup(); adc_setup(); timers_setup(); } void iwdg_setup(){ uint32_t tmout = 16000000; /* Enable the peripheral clock RTC */ /* (1) Enable the LSI (40kHz) */ /* (2) Wait while it is not ready */ RCC->CSR |= RCC_CSR_LSION; /* (1) */ while((RCC->CSR & RCC_CSR_LSIRDY) != RCC_CSR_LSIRDY){if(--tmout == 0) break;} /* (2) */ /* Configure IWDG */ /* (1) Activate IWDG (not needed if done in option bytes) */ /* (2) Enable write access to IWDG registers */ /* (3) Set prescaler by 64 (1.6ms for each tick) */ /* (4) Set reload value to have a rollover each 2s */ /* (5) Check if flags are reset */ /* (6) Refresh counter */ IWDG->KR = IWDG_START; /* (1) */ IWDG->KR = IWDG_WRITE_ACCESS; /* (2) */ IWDG->PR = IWDG_PR_PR_1; /* (3) */ IWDG->RLR = 1250; /* (4) */ tmout = 16000000; while(IWDG->SR){if(--tmout == 0) break;} /* (5) */ IWDG->KR = IWDG_REFRESH; /* (6) */ } // pause in milliseconds for some purposes void pause_ms(uint32_t pause){ uint32_t Tnxt = Tms + pause; while(Tms < Tnxt) nop(); } void Jump2Boot(){ void (*SysMemBootJump)(void); volatile uint32_t addr = SystemMem; // reset systick SysTick->CTRL = 0; // reset clocks RCC->APB1RSTR = RCC_APB1RSTR_CECRST | RCC_APB1RSTR_DACRST | RCC_APB1RSTR_PWRRST | RCC_APB1RSTR_CRSRST | RCC_APB1RSTR_CANRST | RCC_APB1RSTR_USBRST | RCC_APB1RSTR_I2C2RST | RCC_APB1RSTR_I2C1RST | RCC_APB1RSTR_USART4RST | RCC_APB1RSTR_USART3RST | RCC_APB1RSTR_USART2RST | RCC_APB1RSTR_SPI2RST | RCC_APB1RSTR_WWDGRST | RCC_APB1RSTR_TIM14RST | #ifdef STM32F072xB RCC_APB1RSTR_TIM7RST | RCC_APB1RSTR_TIM6RST | #endif RCC_APB1RSTR_TIM3RST | RCC_APB1RSTR_TIM2RST; RCC->APB2RSTR = RCC_APB2RSTR_DBGMCURST | RCC_APB2RSTR_TIM17RST | RCC_APB2RSTR_TIM16RST | #ifdef STM32F072xB RCC_APB2RSTR_TIM15RST | #endif RCC_APB2RSTR_USART1RST | RCC_APB2RSTR_SPI1RST | RCC_APB2RSTR_TIM1RST | RCC_APB2RSTR_ADCRST | RCC_APB2RSTR_SYSCFGRST; RCC->AHBRSTR = 0; RCC->APB1RSTR = 0; RCC->APB2RSTR = 0; /* // reset GPIO - DON'T WORK! ??? GPIOA->MODER = 0; GPIOA->PUPDR = 0; GPIOA->ODR = 0; GPIOB->MODER = 0; GPIOB->PUPDR = 0; GPIOB->ODR = 0; GPIOC->MODER = 0; GPIOC->PUPDR = 0; GPIOC->ODR = 0; #ifdef STM32F072xB GPIOD->MODER = 0; GPIOD->PUPDR = 0; GPIOD->ODR = 0; GPIOE->MODER = 0; GPIOE->PUPDR = 0; GPIOE->ODR = 0; #endif GPIOF->MODER = 0; GPIOF->PUPDR = 0; GPIOF->ODR = 0; */ // remap memory to 0 (only for STM32F0) SYSCFG->CFGR1 = 0x01; __DSB(); __ISB(); SysMemBootJump = (void (*)(void)) (*((uint32_t *)(addr + 4))); // set main stack pointer __set_MSP(*((uint32_t *)addr)); // jump to bootloader SysMemBootJump(); } void buzzer_chk(){ // check buzzer state static uint32_t lastTms = 0; static buzzer_state oldstate = BUZZER_OFF; uint32_t B, S; // length of beep and silence if(buzzer == oldstate){ // keep current state if(lastTms > Tms) return; switch(buzzer){ // beep on/off case BUZZER_LONG: B = LONG_BUZZER_PERIOD; S = LONG_BUZZER_PAUSE; break; case BUZZER_SHORT: B = SHORT_BUZZER_PERIOD; S = SHORT_BUZZER_PAUSE; break; default: return; } if(CHK(BUZZER)){ // is ON OFF(BUZZER); lastTms = Tms + S; }else{ // is OFF ON(BUZZER); lastTms = Tms + B; } return; } switch(buzzer){ // change buzzer state case BUZZER_ON: ON(BUZZER); break; case BUZZER_OFF: OFF(BUZZER); break; case BUZZER_LONG: ON(BUZZER); lastTms = Tms + LONG_BUZZER_PERIOD; break; case BUZZER_SHORT: ON(BUZZER); lastTms = Tms + SHORT_BUZZER_PERIOD; break; } oldstate = buzzer; } void exti4_15_isr(){ EXTI->PR |= EXTI_PR_PR7; // clear pending bit ++Cooler1RPM; }