/* * This file is part of the multistepper project. * Copyright 2023 Edward V. Emelianov . * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #include "flash.h" #include "hardware.h" #include "steppers.h" // Buttons: PA9, PA10, PF6, PD3, PD4, PD5, pullup (active - 0) volatile GPIO_TypeDef* const BTNports[BTNSNO] = {GPIOA, GPIOA, GPIOF, GPIOD, GPIOD, GPIOD}; const uint32_t BTNpins[BTNSNO] = {1<<9, 1<<10, 1<<6, 1<<3, 1<<4, 1<<5}; // Limit switches: 0:PC14/PC13, 1:PB9/PB7, 2:PD7/PD6, 3:PC10/PC11, 4:PC7/PD15, // 5:PD11/PD10, 6:PE11/PE10, 7:PE7/PE8 volatile GPIO_TypeDef *ESWports[MOTORSNO][ESWNO] = { {GPIOC, GPIOC}, // 0 {GPIOB, GPIOB}, {GPIOD, GPIOD}, // 2 {GPIOC, GPIOC}, {GPIOC, GPIOD}, // 4 {GPIOD, GPIOD}, {GPIOE, GPIOE}, // 6 {GPIOE, GPIOE}, }; const uint32_t ESWpins[MOTORSNO][ESWNO] = { {1<<14, 1<<13}, {1<<9, 1<<7}, // 1 {1<<7, 1<<6}, {1<<10, 1<<11}, // 3 {1<<7, 1<<15}, {1<<11, 1<<10}, // 5 {1<<11, 1<<10}, {1<<7, 1<<8}, // 7 }; // GPIO pins: PB11, PE15, PE14 volatile GPIO_TypeDef *EXTports[EXTNO] = { GPIOB, GPIOE, GPIOE }; const uint32_t EXTpins[EXTNO] = { 1<<11, 1<<15, 1<<14 }; // motors: DIR/EN // EN: 0:PF10, 1:PE1, 2:PB6, 3:PD2, 4:PC9, 5:PD14, 6:PE13, 7:PB1 volatile GPIO_TypeDef *ENports[MOTORSNO] = { GPIOF, GPIOE, GPIOB, GPIOD, GPIOC, GPIOD, GPIOE, GPIOB}; const uint32_t ENpins[MOTORSNO] = { 1<<10, 1<<1, 1<<6, 1<<2, 1<<9, 1<<14, 1<<13, 1<<1}; // DIR: 0:PC15, 1:PE0, 2:PB4, 3:PC12, 4:PC8, 5:PD13, 6:PE12, 7:PB2 volatile GPIO_TypeDef *DIRports[MOTORSNO] = { GPIOC, GPIOE, GPIOB, GPIOC, GPIOC, GPIOD, GPIOE, GPIOB}; const uint32_t DIRpins[MOTORSNO] = { 1<<15, 1<<0, 1<<4, 1<<12, 1<<8, 1<<13, 1<<12, 1<<2}; // timers for motors: 0:t15c1, 1:t16c1, 2:t17c1, 3:t2ch1, 4:t8ch1, 5:t4c1, 6:t1c1, 7:t3c3 volatile TIM_TypeDef *mottimers[MOTORSNO] = { TIM15, TIM16, TIM17, TIM2, TIM8, TIM4, TIM1, TIM3}; const uint8_t mottchannels[MOTORSNO] = {1,1,1,1,1,1,1,3}; static IRQn_Type motirqs[MOTORSNO] = { TIM15_IRQn, TIM16_IRQn, TIM17_IRQn, TIM2_IRQn, TIM8_CC_IRQn, TIM4_IRQn, TIM1_CC_IRQn, TIM3_IRQn}; // return two bits: 0 - ESW0, 1 - ESW1 (if inactive -> 1; if active -> 0) uint8_t ESW_state(uint8_t MOTno){ uint8_t val = 0; if(the_conf.isSPI){ // only ESW0 used val = ((ESWports[MOTno][0]->IDR & ESWpins[MOTno][0]) ? 1 : 0); if(the_conf.motflags[MOTno].eswinv) val ^= 1; return val; }else for(int i = 0; i < 2; ++i){ val |= ((ESWports[MOTno][i]->IDR & ESWpins[MOTno][i]) ? 1 : 0) << i; } if(the_conf.motflags[MOTno].eswinv) val ^= 3; return val; } // calculate MSB position of value `val` // 0 1 2 3 4 5 6 7 8 9 a b c d e f static const uint8_t bval[] = {0,0,1,1,2,2,2,2,3,3,3,3,3,3,3,3}; uint8_t MSB(uint16_t val){ register uint8_t r = 0; if(val & 0xff00){r += 8; val >>= 8;} if(val & 0x00f0){r += 4; val >>= 4;} return ((uint8_t)r + bval[val]); } // setup here ALL GPIO pins (due to table in Readme.md) // leave SWD as default AF; high speed for CLK and some other AF; med speed for some another AF TRUE_INLINE void gpio_setup(){ RCC->AHBENR |= RCC_AHBENR_GPIOAEN | RCC_AHBENR_GPIOBEN | RCC_AHBENR_GPIOCEN | RCC_AHBENR_GPIODEN | RCC_AHBENR_GPIOEEN | RCC_AHBENR_GPIOFEN; // enable timers: 1,2,3,4,8,15,16,17 RCC->APB1ENR |= RCC_APB1ENR_TIM2EN | RCC_APB1ENR_TIM3EN | RCC_APB1ENR_TIM4EN; RCC->APB2ENR |= RCC_APB2ENR_TIM1EN | RCC_APB2ENR_TIM8EN | RCC_APB2ENR_TIM15EN | RCC_APB2ENR_TIM16EN | RCC_APB2ENR_TIM17EN; for(int i = 0; i < 10000; ++i) nop(); GPIOA->ODR = 0; GPIOA->AFR[0] = AFRf(5, 5) | AFRf(5, 6) | AFRf(5, 7); GPIOA->AFR[1] = /*AFRf(4, 10) |*/ /*AFRf(14, 11) | AFRf(14,12) |*/ AFRf(1, 15); GPIOA->MODER = MODER_AF(5) | MODER_AF(6) | MODER_AF(7) | MODER_O(8) | MODER_I(9) | MODER_I(10) /*MODER_AF(10)*/ | /*MODER_AF(11) | MODER_AF(12) |*/ MODER_AF(13) | MODER_AF(14) | MODER_AF(15); GPIOA->OSPEEDR = OSPEED_MED(5) | OSPEED_MED(6) | OSPEED_MED(7) | OSPEED_HI(11) | OSPEED_HI(12) | OSPEED_HI(13) | OSPEED_HI(15); GPIOA->OTYPER = 0; GPIOA->PUPDR = PUPD_PU(8) | PUPD_PU(9) | PUPD_PU(10); GPIOB->ODR = 0; GPIOB->AFR[0] = AFRf(2, 0) | AFRf(7, 3) | AFRf(10, 5); GPIOB->AFR[1] = AFRf(1, 8) | AFRf(7, 10) | AFRf(5, 13) | AFRf(5, 14) | AFRf(5, 15); GPIOB->MODER = MODER_AF(0) | MODER_O(1) | MODER_O(2) | MODER_AF(3) | MODER_O(4) | MODER_AF(5) | MODER_O(6) | MODER_I(7) | MODER_AF(8) | MODER_I(9) | MODER_AF(10) | MODER_I(11) | MODER_O(12) | MODER_AF(13) | MODER_AF(14) | MODER_AF(15); GPIOB->OSPEEDR = OSPEED_HI(0) | OSPEED_HI(5) | OSPEED_HI(8) | OSPEED_MED(13) | OSPEED_MED(14) | OSPEED_MED(15); GPIOB->OTYPER = 0; GPIOB->PUPDR = PUPD_PU(7) | PUPD_PU(9) | PUPD_PU(11); GPIOC->ODR = 0; GPIOC->AFR[0] = AFRf(7, 4) | AFRf(7, 5) | AFRf(4, 6); GPIOC->MODER = MODER_O(0) | MODER_O(1) | MODER_O(2) | MODER_O(3) | MODER_AF(4) | MODER_AF(5) | MODER_AF(6) | MODER_I(7) | MODER_O(8) | MODER_O(9) | MODER_I(10) | MODER_I(11) | MODER_O(12) | MODER_I(13) | MODER_I(14) | MODER_O(15); GPIOC->OSPEEDR = OSPEED_HI(6); GPIOC->OTYPER = 0; GPIOC->PUPDR = PUPD_PU(7) | PUPD_PU(10) | PUPD_PU(11) | PUPD_PU(13) | PUPD_PU(14); GPIOD->ODR = 0; GPIOD->AFR[0] = AFRf(7, 0) | AFRf(7, 1); GPIOD->AFR[1] = AFRf(2, 12); GPIOD->MODER = MODER_AF(0) | MODER_AF(1) | MODER_O(2) | MODER_I(3) | MODER_I(4) | MODER_I(5) | MODER_I(6) | MODER_I(7) | MODER_O(8) | MODER_O(9) | MODER_I(10) | MODER_I(11) | MODER_AF(12) | MODER_O(13) | MODER_O(14) | MODER_I(15); GPIOD->OSPEEDR = OSPEED_HI(0) | OSPEED_HI(1) | OSPEED_HI(12); GPIOD->OTYPER = 0; GPIOD->PUPDR = PUPD_PU(3) | PUPD_PU(4) | PUPD_PU(5) | PUPD_PU(6) | PUPD_PU(7) | PUPD_PU(10) | PUPD_PU(11) | PUPD_PU(15); GPIOE->ODR = 0; GPIOE->AFR[1] = AFRf(2, 9); GPIOE->MODER = MODER_O(0) | MODER_O(1) | MODER_I(2) | MODER_O(3) | MODER_O(4) | MODER_O(5) | MODER_O(6) | MODER_I(7) | MODER_I(8) | MODER_AF(9) | MODER_I(10) | MODER_I(11) | MODER_O(12) | MODER_O(13) | MODER_I(14) | MODER_I(15); GPIOE->OSPEEDR = OSPEED_HI(9); GPIOE->OTYPER = 0; GPIOE->PUPDR = PUPD_PU(2) | PUPD_PU(7) | PUPD_PU(8) | PUPD_PU(10) | PUPD_PU(11) | PUPD_PU(14) | PUPD_PU(15); GPIOF->ODR = 0; /*GPIOF->AFR[0] = AFRf(4, 6);*/ GPIOF->AFR[1] = AFRf(3, 9); GPIOF->MODER = MODER_I(6) | MODER_AF(9) | MODER_O(10); GPIOF->OSPEEDR = OSPEED_HI(9); GPIOF->OTYPER = 0; GPIOF->PUPDR = PUPD_PU(6); } #ifndef EBUG TRUE_INLINE void iwdg_setup(){ uint32_t tmout = 16000000; /* Enable the peripheral clock RTC */ /* (1) Enable the LSI (40kHz) */ /* (2) Wait while it is not ready */ RCC->CSR |= RCC_CSR_LSION; /* (1) */ while((RCC->CSR & RCC_CSR_LSIRDY) != RCC_CSR_LSIRDY){if(--tmout == 0) break;} /* (2) */ /* Configure IWDG */ /* (1) Activate IWDG (not needed if done in option bytes) */ /* (2) Enable write access to IWDG registers */ /* (3) Set prescaler by 64 (1.6ms for each tick) */ /* (4) Set reload value to have a rollover each 2s */ /* (5) Check if flags are reset */ /* (6) Refresh counter */ IWDG->KR = IWDG_START; /* (1) */ IWDG->KR = IWDG_WRITE_ACCESS; /* (2) */ IWDG->PR = IWDG_PR_PR_1; /* (3) */ IWDG->RLR = 1250; /* (4) */ tmout = 16000000; while(IWDG->SR){if(--tmout == 0) break;} /* (5) */ IWDG->KR = IWDG_REFRESH; /* (6) */ } #endif // motor's PWM static void setup_mpwm(int i){ volatile TIM_TypeDef *TIM = mottimers[i]; TIM->CR1 = TIM_CR1_ARPE; // buffered ARR TIM->PSC = MOTORTIM_PSC; // 16MHz // PWM mode 1 (active -> inactive) uint8_t n = mottchannels[i]; switch(n){ case 1: TIM->CCMR1 = TIM_CCMR1_OC1M_2 | TIM_CCMR1_OC1M_1; break; case 2: TIM->CCMR1 = TIM_CCMR1_OC2M_2 | TIM_CCMR1_OC2M_1; break; case 3: TIM->CCMR2 = TIM_CCMR2_OC3M_2 | TIM_CCMR2_OC3M_1; break; default: TIM->CCMR2 = TIM_CCMR2_OC4M_2 | TIM_CCMR2_OC4M_1; } #if MOTORTIM_ARRMIN < 5 #error "change the code!" #endif TIM->CCR1 = MOTORTIM_ARRMIN - 3; // ~10us for pulse duration TIM->ARR = 0xffff; // TIM->EGR = TIM_EGR_UG; // generate update to refresh ARR TIM->BDTR |= TIM_BDTR_MOE; // enable main output TIM->CCER = 1<<((n-1)*4); // turn it on, active high TIM->DIER = 1<SR = 0; } void tim2_isr(){ addmicrostep(3); TIM2->SR = 0; } void tim3_isr(){ addmicrostep(7); TIM3->SR = 0; } void tim4_isr(){ addmicrostep(5); TIM4->SR = 0; } void tim8_cc_isr(){ addmicrostep(4); TIM8->SR = 0; } void tim1_brk_tim15_isr(){ addmicrostep(0); TIM15->SR = 0; } void tim1_up_tim16_isr(){ addmicrostep(1); TIM16->SR = 0; } void tim1_trg_com_tim17_isr(){ addmicrostep(2); TIM17->SR = 0; }