/* * Copyright 2024 Edward V. Emelianov . * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #include #include "usb.h" #include "usb_lib.h" #include "usbhw.h" ep_t endpoints[STM32ENDPOINTS]; static uint16_t USB_Addr = 0; static usb_LineCoding lineCoding = {115200, 0, 0, 8}; uint8_t ep0databuf[EP0DATABUF_SIZE], setupdatabuf[EP0DATABUF_SIZE]; config_pack_t *setup_packet = (config_pack_t*) setupdatabuf; usb_LineCoding getLineCoding(){return lineCoding;} volatile uint8_t usbON = 0; // device disconnected from terminal // definition of parts common for USB_DeviceDescriptor & USB_DeviceQualifierDescriptor #define bcdUSB_L 0x10 #define bcdUSB_H 0x01 #define bDeviceClass 0 #define bDeviceSubClass 0 #define bDeviceProtocol 0 #define bNumConfigurations 1 static const uint8_t USB_DeviceDescriptor[] = { 18, // bLength 0x01, // bDescriptorType - Device descriptor bcdUSB_L, // bcdUSB_L - 1.10 bcdUSB_H, // bcdUSB_H bDeviceClass, // bDeviceClass - USB_COMM bDeviceSubClass, // bDeviceSubClass bDeviceProtocol, // bDeviceProtocol USB_EP0_BUFSZ, // bMaxPacketSize 0x7b, // idVendor_L PL2303: VID=0x067b, PID=0x2303 0x06, // idVendor_H 0x03, // idProduct_L 0x23, // idProduct_H 0x00, // bcdDevice_Ver_L 0x03, // bcdDevice_Ver_H iMANUFACTURER_DESCR, // iManufacturer iPRODUCT_DESCR, // iProduct iSERIAL_DESCR, // iSerialNumber bNumConfigurations // bNumConfigurations }; static const uint8_t USB_DeviceQualifierDescriptor[] = { 10, //bLength 0x06, // bDescriptorType - Device qualifier bcdUSB_L, // bcdUSB_L bcdUSB_H, // bcdUSB_H bDeviceClass, // bDeviceClass bDeviceSubClass, // bDeviceSubClass bDeviceProtocol, // bDeviceProtocol USB_EP0_BUFSZ, // bMaxPacketSize0 bNumConfigurations, // bNumConfigurations 0x00 // Reserved }; static const uint8_t USB_ConfigDescriptor[] = { /*Configuration Descriptor*/ 0x09, /* bLength: Configuration Descriptor size */ 0x02, /* bDescriptorType: Configuration */ 39, /* wTotalLength:no of returned bytes */ 0x00, 0x01, /* bNumInterfaces: 1 interface */ 0x01, /* bConfigurationValue: Configuration value */ 0x00, /* iConfiguration: Index of string descriptor describing the configuration */ 0xa0, /* bmAttributes - Bus powered, Remote wakeup */ 0x32, /* MaxPower 100 mA */ /*---------------------------------------------------------------------------*/ /*Interface Descriptor */ 0x09, /* bLength: Interface Descriptor size */ 0x04, /* bDescriptorType: Interface */ 0x00, /* bInterfaceNumber: Number of Interface */ 0x00, /* bAlternateSetting: Alternate setting */ 0x03, /* bNumEndpoints: 3 endpoints used */ 0xff, /* bInterfaceClass */ 0x00, /* bInterfaceSubClass */ 0x00, /* bInterfaceProtocol */ iINTERFACE_DESCR, /* iInterface: */ /////////////////////////////////////////////////// /*Endpoint 1 Descriptor*/ 0x07, /* bLength: Endpoint Descriptor size */ 0x05, /* bDescriptorType: Endpoint */ 0x81, /* bEndpointAddress IN1 */ 0x03, /* bmAttributes: Interrupt */ 0x0a, /* wMaxPacketSize LO: */ 0x00, /* wMaxPacketSize HI: */ 0x01, /* bInterval: */ /*Endpoint OUT2 Descriptor*/ 0x07, /* bLength: Endpoint Descriptor size */ 0x05, /* bDescriptorType: Endpoint */ 0x02, /* bEndpointAddress: OUT2 */ 0x02, /* bmAttributes: Bulk */ (USB_RXBUFSZ & 0xff), /* wMaxPacketSize: 64 */ (USB_RXBUFSZ >> 8), 0x00, /* bInterval: ignore for Bulk transfer */ /*Endpoint IN3 Descriptor*/ 0x07, /* bLength: Endpoint Descriptor size */ 0x05, /* bDescriptorType: Endpoint */ 0x83, /* bEndpointAddress IN3 */ 0x02, /* bmAttributes: Bulk */ (USB_TXBUFSZ & 0xff), /* wMaxPacketSize: 64 */ (USB_TXBUFSZ >> 8), 0x00, /* bInterval: ignore for Bulk transfer */ }; _USB_LANG_ID_(LD, LANG_US); _USB_STRING_(SD, u"0.0.1"); _USB_STRING_(MD, u"Prolific Technology Inc."); _USB_STRING_(PD, u"USB-Serial Controller"); _USB_STRING_(ID, u"USB-STM32"); static void const *StringDescriptor[iDESCR_AMOUNT] = { [iLANGUAGE_DESCR] = &LD, [iMANUFACTURER_DESCR] = &MD, [iPRODUCT_DESCR] = &PD, [iSERIAL_DESCR] = &SD, [iINTERFACE_DESCR] = &ID }; /* * default handlers */ // SET_LINE_CODING void WEAK linecoding_handler(usb_LineCoding __attribute__((unused)) *lc){ } // SET_CONTROL_LINE_STATE void WEAK clstate_handler(uint16_t __attribute__((unused)) val){ } // SEND_BREAK void WEAK break_handler(){ } // handler of vendor requests void WEAK vendor_handler(config_pack_t *packet){ uint16_t c; if(packet->bmRequestType & 0x80){ // read switch(packet->wValue){ case 0x8484: c = 2; break; case 0x0080: c = 1; break; case 0x8686: c = 0xaa; break; default: c = 0; } EP_WriteIRQ(0, (uint8_t*)&c, 1); }else{ // write ZLP c = 0; EP_WriteIRQ(0, (uint8_t *)&c, 0); } } static void wr0(const uint8_t *buf, uint16_t size){ if(setup_packet->wLength < size) size = setup_packet->wLength; // shortened request if(size < endpoints[0].txbufsz){ EP_WriteIRQ(0, buf, size); return; } while(size){ uint16_t l = size; if(l > endpoints[0].txbufsz) l = endpoints[0].txbufsz; EP_WriteIRQ(0, buf, l); buf += l; size -= l; uint8_t needzlp = (l == endpoints[0].txbufsz) ? 1 : 0; if(size || needzlp){ // send last data buffer uint16_t status = KEEP_DTOG(USB->EPnR[0]); // keep DTOGs, clear CTR_RX,TX, set TX VALID, leave stat_Rx USB->EPnR[0] = (status & ~(USB_EPnR_CTR_RX|USB_EPnR_CTR_TX|USB_EPnR_STAT_RX)) ^ USB_EPnR_STAT_TX; uint32_t ctr = 1000000; while(--ctr && (USB->ISTR & USB_ISTR_CTR) == 0){IWDG->KR = IWDG_REFRESH;}; if((USB->ISTR & USB_ISTR_CTR) == 0){ return; } if(needzlp) EP_WriteIRQ(0, (uint8_t*)0, 0); } } } static inline void get_descriptor(){ uint8_t descrtype = setup_packet->wValue >> 8, descridx = setup_packet->wValue & 0xff; switch(descrtype){ case DEVICE_DESCRIPTOR: wr0(USB_DeviceDescriptor, sizeof(USB_DeviceDescriptor)); break; case CONFIGURATION_DESCRIPTOR: wr0(USB_ConfigDescriptor, sizeof(USB_ConfigDescriptor)); break; case STRING_DESCRIPTOR: if(descridx < iDESCR_AMOUNT) wr0((const uint8_t *)StringDescriptor[descridx], *((uint8_t*)StringDescriptor[descridx])); else EP_WriteIRQ(0, (uint8_t*)0, 0); break; case DEVICE_QUALIFIER_DESCRIPTOR: wr0(USB_DeviceQualifierDescriptor, USB_DeviceQualifierDescriptor[0]); break; default: break; } } static uint16_t configuration = 0; // reply for GET_CONFIGURATION (==1 if configured) static inline void std_d2h_req(){ uint16_t status = 0; // bus powered switch(setup_packet->bRequest){ case GET_DESCRIPTOR: get_descriptor(); break; case GET_STATUS: EP_WriteIRQ(0, (uint8_t *)&status, 2); // send status: Bus Powered break; case GET_CONFIGURATION: EP_WriteIRQ(0, (uint8_t*)&configuration, 1); break; default: break; } } // interrupt IN handler (never used?) static void EP1_Handler(){ uint16_t epstatus = KEEP_DTOG(USB->EPnR[1]); if(RX_FLAG(epstatus)) epstatus = (epstatus & ~USB_EPnR_STAT_TX) ^ USB_EPnR_STAT_RX; // set valid RX else epstatus = epstatus & ~(USB_EPnR_STAT_TX|USB_EPnR_STAT_RX); // clear CTR epstatus = (epstatus & ~(USB_EPnR_CTR_RX|USB_EPnR_CTR_TX)); USB->EPnR[1] = epstatus; } // data IN/OUT handlers static void transmit_Handler(){ // EP3IN uint16_t epstatus = KEEP_DTOG_STAT(USB->EPnR[3]); // clear CTR keep DTOGs & STATs USB->EPnR[3] = (epstatus & ~(USB_EPnR_CTR_TX)); // clear TX ctr send_next(); } static uint8_t volatile rcvbuf[USB_RXBUFSZ]; static uint8_t volatile rcvbuflen = 0; void chkin(){ if(bufovrfl) return; if(!rcvbuflen) return; int w = RB_write((ringbuffer*)&rbin, (uint8_t*)rcvbuf, rcvbuflen); if(w < 0) return; if(w != rcvbuflen) bufovrfl = 1; rcvbuflen = 0; uint16_t status = KEEP_DTOG(USB->EPnR[2]); // don't change DTOG USB->EPnR[2] = status ^ USB_EPnR_STAT_RX; } // receiver reads data from local buffer and only then ACK'ed static void receive_Handler(){ // EP2OUT uint16_t status = KEEP_DTOG_STAT(USB->EPnR[2]); // don't change DTOG and NACK if(rcvbuflen){ bufovrfl = 1; // lost last data rcvbuflen = 0; } rcvbuflen = EP_Read(2, (uint8_t*)rcvbuf); USB->EPnR[2] = status & ~USB_EPnR_CTR_RX; } static inline void std_h2d_req(){ switch(setup_packet->bRequest){ case SET_ADDRESS: // new address will be assigned later - after acknowlegement or request to host USB_Addr = setup_packet->wValue; break; case SET_CONFIGURATION: // Now device configured configuration = setup_packet->wValue; EP_Init(1, EP_TYPE_INTERRUPT, USB_EP1BUFSZ, 0, EP1_Handler); // IN1 - transmit EP_Init(2, EP_TYPE_BULK, 0, USB_RXBUFSZ, receive_Handler); // OUT2 - receive data EP_Init(3, EP_TYPE_BULK, USB_TXBUFSZ, 0, transmit_Handler); // IN3 - transmit data break; default: break; } } /* bmRequestType: 76543210 7 direction: 0 - host->device, 1 - device->host 65 type: 0 - standard, 1 - class, 2 - vendor 4..0 getter: 0 - device, 1 - interface, 2 - endpoint, 3 - other */ /** * Endpoint0 (control) handler */ void EP0_Handler(){ uint16_t epstatus = USB->EPnR[0]; // EP0R on input -> return this value after modifications uint8_t reqtype = setup_packet->bmRequestType & 0x7f; uint8_t dev2host = (setup_packet->bmRequestType & 0x80) ? 1 : 0; int rxflag = RX_FLAG(epstatus); if(rxflag && SETUP_FLAG(epstatus)){ switch(reqtype){ case STANDARD_DEVICE_REQUEST_TYPE: // standard device request if(dev2host){ std_d2h_req(); }else{ std_h2d_req(); EP_WriteIRQ(0, (uint8_t *)0, 0); } break; case STANDARD_ENDPOINT_REQUEST_TYPE: // standard endpoint request if(setup_packet->bRequest == CLEAR_FEATURE){ EP_WriteIRQ(0, (uint8_t *)0, 0); } break; case VENDOR_REQUEST_TYPE: vendor_handler(setup_packet); break; case CONTROL_REQUEST_TYPE: switch(setup_packet->bRequest){ case GET_LINE_CODING: EP_WriteIRQ(0, (uint8_t*)&lineCoding, sizeof(lineCoding)); break; case SET_LINE_CODING: // omit this for next stage, when data will come break; case SET_CONTROL_LINE_STATE: usbON = 1; clstate_handler(setup_packet->wValue); break; case SEND_BREAK: usbON = 0; break_handler(); break; default: break; } if(setup_packet->bRequest != GET_LINE_CODING) EP_WriteIRQ(0, (uint8_t *)0, 0); // write acknowledgement break; default: EP_WriteIRQ(0, (uint8_t *)0, 0); } }else if(rxflag){ // got data over EP0 or host acknowlegement if(endpoints[0].rx_cnt){ if(setup_packet->bRequest == SET_LINE_CODING){ linecoding_handler((usb_LineCoding*)ep0databuf); } } } else if(TX_FLAG(epstatus)){ // package transmitted // now we can change address after enumeration if ((USB->DADDR & USB_DADDR_ADD) != USB_Addr){ USB->DADDR = USB_DADDR_EF | USB_Addr; usbON = 0; } } epstatus = KEEP_DTOG(USB->EPnR[0]); if(rxflag) epstatus ^= USB_EPnR_STAT_TX; // start ZLP/data transmission else epstatus &= ~USB_EPnR_STAT_TX; // or leave unchanged // keep DTOGs, clear CTR_RX,TX, set RX VALID USB->EPnR[0] = (epstatus & ~(USB_EPnR_CTR_RX|USB_EPnR_CTR_TX)) ^ USB_EPnR_STAT_RX; } /** * Write data to EP buffer (called from IRQ handler) * @param number - EP number * @param *buf - array with data * @param size - its size */ void EP_WriteIRQ(uint8_t number, const uint8_t *buf, uint16_t size){ if(size > endpoints[number].txbufsz) size = endpoints[number].txbufsz; uint16_t N2 = (size + 1) >> 1; // the buffer is 16-bit, so we should copy data as it would be uint16_t uint16_t *buf16 = (uint16_t *)buf; #if defined USB1_16 // very bad: what if `size` is odd? uint32_t *out = (uint32_t *)endpoints[number].tx_buf; for(int i = 0; i < N2; ++i, ++out){ *out = buf16[i]; } #elif defined USB2_16 // use memcpy instead? for(int i = 0; i < N2; i++){ endpoints[number].tx_buf[i] = buf16[i]; } #else #error "Define USB1_16 or USB2_16" #endif USB_BTABLE->EP[number].USB_COUNT_TX = size; } /** * Write data to EP buffer (called outside IRQ handler) * @param number - EP number * @param *buf - array with data * @param size - its size */ void EP_Write(uint8_t number, const uint8_t *buf, uint16_t size){ EP_WriteIRQ(number, buf, size); uint16_t status = KEEP_DTOG(USB->EPnR[number]); // keep DTOGs, clear CTR_TX & set TX VALID to start transmission USB->EPnR[number] = (status & ~(USB_EPnR_CTR_TX)) ^ USB_EPnR_STAT_TX; } /* * Copy data from EP buffer into user buffer area * @param *buf - user array for data * @return amount of data read */ int EP_Read(uint8_t number, uint8_t *buf){ int sz = endpoints[number].rx_cnt; if(!sz) return 0; endpoints[number].rx_cnt = 0; #if defined USB1_16 int n = (sz + 1) >> 1; uint32_t *in = (uint32_t*)endpoints[number].rx_buf; uint16_t *out = (uint16_t*)buf; for(int i = 0; i < n; ++i, ++in) out[i] = *(uint16_t*)in; #elif defined USB2_16 // use memcpy instead? for(int i = 0; i < sz; ++i) buf[i] = endpoints[number].rx_buf[i]; #else #error "Define USB1_16 or USB2_16" #endif return sz; } static uint16_t lastaddr = LASTADDR_DEFAULT; /** * Endpoint initialisation * @param number - EP num (0...7) * @param type - EP type (EP_TYPE_BULK, EP_TYPE_CONTROL, EP_TYPE_ISO, EP_TYPE_INTERRUPT) * @param txsz - transmission buffer size @ USB/CAN buffer * @param rxsz - reception buffer size @ USB/CAN buffer * @param uint16_t (*func)(ep_t *ep) - EP handler function * @return 0 if all OK */ int EP_Init(uint8_t number, uint8_t type, uint16_t txsz, uint16_t rxsz, void (*func)(ep_t ep)){ if(number >= STM32ENDPOINTS) return 4; // out of configured amount if(txsz > USB_BTABLE_SIZE || rxsz > USB_BTABLE_SIZE) return 1; // buffer too large if(lastaddr + txsz + rxsz >= USB_BTABLE_SIZE/ACCESSZ) return 2; // out of btable USB->EPnR[number] = (type << 9) | (number & USB_EPnR_EA); USB->EPnR[number] ^= USB_EPnR_STAT_RX | USB_EPnR_STAT_TX_1; if(rxsz & 1 || rxsz > USB_BTABLE_SIZE) return 3; // wrong rx buffer size uint16_t countrx = 0; if(rxsz < 64) countrx = rxsz / 2; else{ if(rxsz & 0x1f) return 3; // should be multiple of 32 countrx = 31 + rxsz / 32; } USB_BTABLE->EP[number].USB_ADDR_TX = lastaddr; endpoints[number].tx_buf = (uint16_t *)(USB_BTABLE_BASE + lastaddr * ACCESSZ); endpoints[number].txbufsz = txsz; lastaddr += txsz; USB_BTABLE->EP[number].USB_COUNT_TX = 0; USB_BTABLE->EP[number].USB_ADDR_RX = lastaddr; endpoints[number].rx_buf = (uint8_t *)(USB_BTABLE_BASE + lastaddr * ACCESSZ); lastaddr += rxsz; USB_BTABLE->EP[number].USB_COUNT_RX = countrx << 10; endpoints[number].func = func; return 0; } // standard IRQ handler void USB_IRQ(){ if(USB->ISTR & USB_ISTR_RESET){ usbON = 0; // Reinit registers USB->CNTR = USB_CNTR_RESETM | USB_CNTR_CTRM | USB_CNTR_SUSPM | USB_CNTR_WKUPM; // Endpoint 0 - CONTROL // ON USB LS size of EP0 may be 8 bytes, but on FS it should be 64 bytes! lastaddr = LASTADDR_DEFAULT; // clear address, leave only enable bit USB->DADDR = USB_DADDR_EF; if(EP_Init(0, EP_TYPE_CONTROL, USB_EP0_BUFSZ, USB_EP0_BUFSZ, EP0_Handler)){ return; } USB->ISTR = ~USB_ISTR_RESET; } if(USB->ISTR & USB_ISTR_CTR){ // EP number uint8_t n = USB->ISTR & USB_ISTR_EPID; // copy status register uint16_t epstatus = USB->EPnR[n]; // copy received bytes amount endpoints[n].rx_cnt = USB_BTABLE->EP[n].USB_COUNT_RX & 0x3FF; // low 10 bits is counter // check direction if(USB->ISTR & USB_ISTR_DIR){ // OUT interrupt - receive data, CTR_RX==1 (if CTR_TX == 1 - two pending transactions: receive following by transmit) if(n == 0){ // control endpoint if(epstatus & USB_EPnR_SETUP){ // setup packet -> copy data to conf_pack EP_Read(0, setupdatabuf); // interrupt handler will be called later }else if(epstatus & USB_EPnR_CTR_RX){ // data packet -> push received data to ep0databuf EP_Read(0, ep0databuf); } } } // call EP handler if(endpoints[n].func) endpoints[n].func(endpoints[n]); } if(USB->ISTR & USB_ISTR_SUSP){ // suspend -> still no connection, may sleep usbON = 0; #ifndef STM32F0 USB->CNTR |= USB_CNTR_FSUSP | USB_CNTR_LP_MODE; #else USB->CNTR |= USB_CNTR_FSUSP | USB_CNTR_LPMODE; #endif USB->ISTR = ~USB_ISTR_SUSP; } if(USB->ISTR & USB_ISTR_WKUP){ // wakeup #ifndef STM32F0 USB->CNTR &= ~(USB_CNTR_FSUSP | USB_CNTR_LP_MODE); // clear suspend flags #else USB->CNTR &= ~(USB_CNTR_FSUSP | USB_CNTR_LPMODE); #endif USB->ISTR = ~USB_ISTR_WKUP; } } #if defined STM32F3 void usb_lp_isr() __attribute__ ((alias ("USB_IRQ"))); #elif defined STM32F1 void usb_lp_can_rx0_isr() __attribute__ ((alias ("USB_IRQ"))); #elif defined STM32F0 void usb_isr() __attribute__ ((alias ("USB_IRQ"))); #endif