/* * This file is part of the pwmtest project. * Copyright 2020 Edward V. Emelianov . * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #include "hardware.h" #include "proto.h" #include "usb.h" static uint32_t PWM_freq = 80000; // 80kHz static uint32_t PWM_duty = 50; // PWM duty cycle in promille static inline void gpio_setup(){ // Enable clocks to the GPIO subsystems (PB for ADC), turn on AFIO clocking to disable SWD/JTAG RCC->APB2ENR |= RCC_APB2ENR_IOPAEN | RCC_APB2ENR_IOPCEN | RCC_APB2ENR_AFIOEN; // turn off SWJ/JTAG // AFIO->MAPR = AFIO_MAPR_SWJ_CFG_DISABLE; AFIO->MAPR = AFIO_MAPR_SWJ_CFG_JTAGDISABLE; // for PA15 // Set led as opendrain output GPIOC->CRH |= CRH(13, CNF_ODOUTPUT|MODE_SLOW); // USB pullup (PA15) - pushpull output, PA8 - alternate GPIOA->CRH = CRH(15, CNF_PPOUTPUT|MODE_SLOW) | CRH(8, CNF_AFPP | MODE_FAST); } static inline void tim1_setup(){ RCC->APB2ENR |= RCC_APB2ENR_TIM1EN; // enable TIM1 clocking TIM1->PSC = 8; // 8MHz TIM1->ARR = 99; // 100 ticks for 80kHz TIM1->CCR1 = 49; // 50% // PWM mode 1 (active->inactive) TIM1->CCMR1 = TIM_CCMR1_OC1M_2 | TIM_CCMR1_OC1M_1 | TIM_CCMR1_OC1PE; // main output TIM1->BDTR = TIM_BDTR_MOE; // main PWM output TIM1->CCER = TIM_CCER_CC1E; // turn it on TIM1->CR1 = TIM_CR1_CEN;// | TIM_CR1_ARPE; TIM1->EGR |= TIM_EGR_UG; // generate update event to refresh all } static void refresh_ccr1(){ if(PWM_duty == 0){ TIM1->CCR1 = 0; return; } uint32_t ccr1 = (PWM_duty*(TIM1->ARR+1.))/1000; USB_send("New CCR1: "); USB_send(u2str(ccr1)); USB_send("\n"); TIM1->CCR1 = ccr1; } // return 0 if can't change or return 1 int changePWMfreq(uint32_t freq){ if(!freq) return 0; // zero frequency uint32_t ARRPSC = (uint32_t)TIM1FREQ / freq; // both ARR and PSC have 16 bits if(ARRPSC < 100) return 0; // frequency too big // 1hz: ARRPSC=72000000, ARR=1098, PSC=65513; Freq=72000000/1099/65514=1.0000016Hz // 98kHz: ARRPSC=734, ARR=0, PSC=733; Freq=72000000/1/734=98092Hz uint32_t PSC = ARRPSC >> 16; uint32_t ARR = ARRPSC / (PSC+1) - 1; PWM_freq = TIM1FREQ/(ARR+1.)/(PSC+1.); TIM1->ARR = ARR; TIM1->PSC = PSC; USB_send("New PSC: "); USB_send(u2str(PSC)); USB_send("\nNew ARR: "); USB_send(u2str(ARR)); USB_send("\n"); refresh_ccr1(); return 1; } // change duty; return 0 if wrong, 1 if OK (duty in promille) int changePWMduty(uint32_t duty){ if(duty > 1000) return 0; // wrong duty PWM_duty = duty; refresh_ccr1(); return 1; } void hw_setup(){ gpio_setup(); tim1_setup(); } void iwdg_setup(){ uint32_t tmout = 16000000; RCC->CSR |= RCC_CSR_LSION; while((RCC->CSR & RCC_CSR_LSIRDY) != RCC_CSR_LSIRDY){if(--tmout == 0) break;} /* (2) */ IWDG->KR = IWDG_START; IWDG->KR = IWDG_WRITE_ACCESS; IWDG->PR = IWDG_PR_PR_1; IWDG->RLR = 1250; tmout = 16000000; while(IWDG->SR){if(--tmout == 0) break;} IWDG->KR = IWDG_REFRESH; }