/** * Ciastkolog.pl (https://github.com/ciastkolog) * */ /** * The MIT License (MIT) * * Copyright (c) 2016 sheinz (https://github.com/sheinz) * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ /* * This file is part of the BMP280 project. * Copyright 2021 Edward V. Emelianov . * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #include "i2c.h" #include "BMP280.h" //#define EBUG #ifdef EBUG #include "usb.h" #include "proto.h" #define DBG(x) do{USB_send(x);}while(0) #else #define DBG(x) #endif #define BMP280_I2C_ADDRESS_MASK 0x76 #define BMP280_I2C_ADDRESS_0 0x76 #define BMP280_I2C_ADDRESS_1 0x77 /** * BMP280 registers */ #define BMP280_REG_HUM_LSB 0xFE #define BMP280_REG_HUM_MSB 0xFD #define BMP280_REG_HUM (BMP280_REG_HUM_MSB) #define BMP280_REG_TEMP_XLSB 0xFC /* bits: 7-4 */ #define BMP280_REG_TEMP_LSB 0xFB #define BMP280_REG_TEMP_MSB 0xFA #define BMP280_REG_TEMP (BMP280_REG_TEMP_MSB) #define BMP280_REG_PRESS_XLSB 0xF9 /* bits: 7-4 */ #define BMP280_REG_PRESS_LSB 0xF8 #define BMP280_REG_PRESS_MSB 0xF7 #define BMP280_REG_PRESSURE (BMP280_REG_PRESS_MSB) #define BMP280_REG_ALLDATA (BMP280_REG_PRESS_MSB) // all data: P, T & H #define BMP280_REG_CONFIG 0xF5 /* bits: 7-5 t_sb; 4-2 filter; 0 spi3w_en */ #define BMP280_REG_CTRL 0xF4 /* bits: 7-5 osrs_t; 4-2 osrs_p; 1-0 mode */ #define BMP280_REG_STATUS 0xF3 /* bits: 3 measuring; 0 im_update */ #define BMP280_REG_CTRL_HUM 0xF2 /* bits: 2-0 osrs_h; */ #define BMP280_REG_RESET 0xE0 #define BMP280_RESET_VALUE 0xB6 #define BMP280_REG_ID 0xD0 #define BMP280_REG_CALIBA 0x88 #define BMP280_CALIBA_SIZE (26) // 26 bytes of calibration registers sequence from 0x88 to 0xa1 #define BMP280_CALIBB_SIZE (7) // 7 bytes of calibration registers sequence from 0xe1 to 0xe7 #define BMP280_REG_CALIBB 0xE1 #define BMP280_MODE_FORSED (1) // force single measurement #define BMP280_MODE_NORMAL (3) // run continuosly #define BMP280_STATUS_MSRNG (1<<3) // measuring in process static uint8_t curaddress = BMP280_I2C_ADDRESS_0; static struct { // temperature uint16_t dig_T1; // 0x88 (LSB), 0x98 (MSB) int16_t dig_T2; // ... int16_t dig_T3; // pressure uint16_t dig_P1; int16_t dig_P2; int16_t dig_P3; int16_t dig_P4; int16_t dig_P5; int16_t dig_P6; int16_t dig_P7; int16_t dig_P8; int16_t dig_P9; // 0x9e, 0x9f // humidity (partially calculated from EEE struct) uint8_t unused; // 0xA0 uint8_t dig_H1; // 0xA1 int16_t dig_H2; // -------------------- uint8_t dig_H3; // only from EEE uint16_t dig_H4; uint16_t dig_H5; int8_t dig_H6; // data is ready uint8_t rdy; } __attribute__ ((packed)) CaliData = {0}; //T: 28222 26310 50 //P: 37780 -10748 3024 7965 -43 -7 9900 -10230 4285 //H: 75 25601 0 334 50 30 // data for humidity calibration of BME280 static uint8_t EEE[BMP280_CALIBB_SIZE] = {0}; static struct{ BMP280_Filter filter; // filtering BMP280_Oversampling p_os; // oversampling for pressure BMP280_Oversampling t_os; // -//- temperature BMP280_Oversampling h_os; // -//- humidity uint8_t ID; // identificator uint8_t regctl; // control register base value [(params.t_os << 5) | (params.p_os << 2)] } params = { .filter = BMP280_FILTER_OFF, .p_os = BMP280_OVERS16, .t_os = BMP280_OVERS16, .h_os = BMP280_OVERS16, .ID = 0 }; static BMP280_status bmpstatus = BMP280_NOTINIT; BMP280_status BMP280_get_status(){ return bmpstatus; } // address: 0 or 1 void BMP280_setup(uint8_t address){ curaddress = BMP280_I2C_ADDRESS_MASK | (address & 1); bmpstatus = BMP280_NOTINIT; } // setters for `params` void BMP280_setfilter(BMP280_Filter f){ params.filter = f; } void BMP280_setOSt(BMP280_Oversampling os){ params.t_os = os; } void BMP280_setOSp(BMP280_Oversampling os){ params.p_os = os; } void BMP280_setOSh(BMP280_Oversampling os){ params.h_os = os; } /* // read register, @return 1 if all OK static int read_reg16(uint8_t reg, uint16_t *val){ if(I2C_OK != i2c_7bit_send_onebyte(reg, 0)) return 0; if(I2C_OK != i2c_7bit_receive_twobytes((uint8_t*)val)) return 0; return 1; }*/ static int read_reg8(uint8_t reg, uint8_t *val){ if(I2C_OK != i2c_7bit_send_onebyte(reg, 0)) return 0; if(I2C_OK != i2c_7bit_receive_onebyte(val, 1)) return 0; return 1; } static int write_reg8(uint8_t reg, uint8_t val){ uint8_t d[2] = {reg, val}; if(I2C_OK != i2c_7bit_send(d, 2)) return 0; return 1; } // get compensation data, return 1 if OK static int readcompdata(){ if(I2C_OK != i2c_7bit_send_onebyte(BMP280_REG_CALIBA, 0)) return 0; if(I2C_OK != i2c_7bit_receive((uint8_t*)&CaliData, BMP280_CALIBA_SIZE)) return 0; CaliData.rdy = 1; if(params.ID == BME280_CHIP_ID){ if(I2C_OK == i2c_7bit_send_onebyte(BMP280_REG_CALIBB, 0) && I2C_OK == i2c_7bit_receive(EEE, BMP280_CALIBB_SIZE)){ CaliData.dig_H2 = (EEE[1] << 8) | EEE[0]; CaliData.dig_H3 = EEE[2]; CaliData.dig_H4 = (EEE[3] << 4) | (EEE[4] & 0x0f); CaliData.dig_H5 = (EEE[5] << 4) | (EEE[4] >> 4); CaliData.dig_H6 = EEE[6]; } } return 1; } // read compensation data & write registers int BMP280_init(){ i2c_setup(); i2c_set_addr7(curaddress); if(!read_reg8(BMP280_REG_ID, ¶ms.ID)) return 0; DBG("Got device ID: "); DBG(u2str(params.ID)); DBG("\n"); if(params.ID != BMP280_CHIP_ID && params.ID != BME280_CHIP_ID){ DBG("Not BMP/BME\n"); return 0; } if(!write_reg8(BMP280_REG_RESET, BMP280_RESET_VALUE)){ DBG("Can't reset\n"); return 0; } uint8_t reg = 1; while(reg & 1){ if(!read_reg8(BMP280_REG_STATUS, ®)) return 0; } if(!readcompdata()){ DBG("Can't read calibration data\n"); }else{ DBG("T: "); DBG(u2str(CaliData.dig_T1)); DBG(" "); DBG(i2str(CaliData.dig_T2)); DBG(" "); DBG(i2str(CaliData.dig_T3)); DBG("\nP: "); DBG(u2str(CaliData.dig_P1)); DBG(" "); DBG(i2str(CaliData.dig_P2)); DBG(" "); DBG(i2str(CaliData.dig_P3)); DBG(" "); DBG(i2str(CaliData.dig_P4)); DBG(" "); DBG(i2str(CaliData.dig_P5)); DBG(" "); DBG(i2str(CaliData.dig_P6)); DBG(" "); DBG(i2str(CaliData.dig_P7)); DBG(" "); DBG(i2str(CaliData.dig_P8)); DBG(" "); DBG(i2str(CaliData.dig_P9)); DBG("\nH: "); DBG(u2str(CaliData.dig_H1)); DBG(" "); if(params.ID == BME280_CHIP_ID){ // read H compensation DBG(i2str(CaliData.dig_H2)); DBG(" "); DBG(u2str(CaliData.dig_H3)); DBG(" "); DBG(i2str(CaliData.dig_H4)); DBG(" "); DBG(i2str(CaliData.dig_H5)); DBG(" "); DBG(i2str(CaliData.dig_H6)); }else{DBG("not BME!");} DBG("\n"); } // write filter configuration reg = params.filter << 2; if(!write_reg8(BMP280_REG_CONFIG, reg)){DBG("Can't save filter settings\n");} reg = (params.t_os << 5) | (params.p_os << 2); // oversampling for P/T, sleep mode if(!write_reg8(BMP280_REG_CTRL, reg)){ DBG("Can't write settings for P/T\n"); return 0; } params.regctl = reg; if(params.ID == BME280_CHIP_ID){ // write CTRL_HUM only AFTER CTRL! reg = params.h_os; if(!write_reg8(BMP280_REG_CTRL_HUM, reg)){ DBG("Can't write settings for H\n"); return 0; } } return 1; } // @return 1 if OK, *devid -> BMP/BME int BMP280_read_ID(uint8_t *devid){ if(params.ID != BMP280_CHIP_ID && params.ID != BME280_CHIP_ID) return 0; *devid = params.ID; return 1; } // start measurement, @return 1 if all OK int BMP280_start(){ if(!CaliData.rdy || bmpstatus == BMP280_BUSY) return 0; uint8_t reg = params.regctl | BMP280_MODE_FORSED; if(!write_reg8(BMP280_REG_CTRL, reg)){ DBG("Can't write CTRL reg\n"); return 0; } bmpstatus = BMP280_BUSY; return 1; } void BMP280_process(){ if(bmpstatus != BMP280_BUSY) return; // BUSY state: poll data ready uint8_t reg; if(!read_reg8(BMP280_REG_STATUS, ®)) return; if(reg & BMP280_STATUS_MSRNG) return; // still busy bmpstatus = BMP280_RDY; // data ready } // return T*100 degC static inline int32_t compTemp(int32_t adc_temp, int32_t *t_fine){ int32_t var1, var2; var1 = ((((adc_temp >> 3) - ((int32_t) CaliData.dig_T1 << 1))) * (int32_t) CaliData.dig_T2) >> 11; var2 = (((((adc_temp >> 4) - (int32_t) CaliData.dig_T1) * ((adc_temp >> 4) - (int32_t) CaliData.dig_T1)) >> 12) * (int32_t) CaliData.dig_T3) >> 14; *t_fine = var1 + var2; return (*t_fine * 5 + 128) >> 8; } // return p*256 hPa static inline uint32_t compPres(int32_t adc_press, int32_t fine_temp) { int64_t var1, var2, p; var1 = (int64_t) fine_temp - 128000; var2 = var1 * var1 * (int64_t) CaliData.dig_P6; var2 = var2 + ((var1 * (int64_t) CaliData.dig_P5) << 17); var2 = var2 + (((int64_t) CaliData.dig_P4) << 35); var1 = ((var1 * var1 * (int64_t) CaliData.dig_P3) >> 8) + ((var1 * (int64_t) CaliData.dig_P2) << 12); var1 = (((int64_t) 1 << 47) + var1) * ((int64_t) CaliData.dig_P1) >> 33; if (var1 == 0){ return 0; // avoid exception caused by division by zero } p = 1048576 - adc_press; p = (((p << 31) - var2) * 3125) / var1; var1 = ((int64_t) CaliData.dig_P9 * (p >> 13) * (p >> 13)) >> 25; var2 = ((int64_t) CaliData.dig_P8 * p) >> 19; p = ((p + var1 + var2) >> 8) + ((int64_t) CaliData.dig_P7 << 4); return p; } // return H*1024 % static inline uint32_t compHum(int32_t adc_hum, int32_t fine_temp){ int32_t v_x1_u32r; v_x1_u32r = fine_temp - (int32_t) 76800; v_x1_u32r = ((((adc_hum << 14) - (((int32_t)CaliData.dig_H4) << 20) - (((int32_t)CaliData.dig_H5) * v_x1_u32r)) + (int32_t)16384) >> 15) * (((((((v_x1_u32r * ((int32_t)CaliData.dig_H6)) >> 10) * (((v_x1_u32r * ((int32_t)CaliData.dig_H3)) >> 11) + (int32_t)32768)) >> 10) + (int32_t)2097152) * ((int32_t)CaliData.dig_H2) + 8192) >> 14); DBG("Step1: "); DBG(i2str(v_x1_u32r)); DBG(".. "); v_x1_u32r = v_x1_u32r - (((((v_x1_u32r >> 15) * (v_x1_u32r >> 15)) >> 7) * ((int32_t)CaliData.dig_H1)) >> 4); DBG("Step2: "); DBG(i2str(v_x1_u32r)); DBG(".. "); v_x1_u32r = v_x1_u32r < 0 ? 0 : v_x1_u32r; v_x1_u32r = v_x1_u32r > 419430400 ? 419430400 : v_x1_u32r; DBG("Step3: "); DBG(i2str(v_x1_u32r)); DBG("\n"); return v_x1_u32r >> 12; } // read data & convert it int BMP280_getdata(int32_t *T, uint32_t *P, uint32_t *H){ if(bmpstatus != BMP280_RDY) return 0; bmpstatus = BMP280_RELAX; uint8_t datasz = 8; // amount of bytes to read if(params.ID != BME280_CHIP_ID){ DBG("Not BME!\n"); if(H) *H = 0; H = NULL; datasz = 6; } uint8_t data[8]; if(I2C_OK != i2c_7bit_send_onebyte(BMP280_REG_ALLDATA, 0)) return 0; if(I2C_OK != i2c_7bit_receive(data, datasz)) return 0; int32_t p = (data[0] << 12) | (data[1] << 4) | (data[2] >> 4); DBG("puncomp = "); DBG(i2str(p)); DBG("\n"); int32_t t = (data[3] << 12) | (data[4] << 4) | (data[5] >> 4); DBG("tuncomp = "); DBG(i2str(t)); DBG("\n"); int32_t t_fine; int32_t Temp = compTemp(t, &t_fine); DBG("tfine = "); DBG(i2str(t_fine)); DBG("\n"); if(T) *T = Temp; if(P){ float fp = compPres(p, t_fine) / 256.; *P = fp;// * 100.; } if(H){ int32_t h = (data[6] << 8) | data[7]; DBG("huncomp = "); DBG(i2str(h)); DBG("\n"); float fh = compHum(h, t_fine)/1024.; *H = fh * 100.; } return 1; } #if 0 /* * start themperature reading @return 0 if all OK */ int BMP280_cmdT(){ const uint8_t cmd[2] = {0x03, 0x11}; if(state != RELAX){ return 1; } bmpstatus = BMP280_BUSY; i2c_status st = i2c_7bit_send(cmd, 2); if(st != I2C_OK){ bmpstatus = BMP280_ERR; return 1; } DBG("Wait for T\n"); state = WAITFORT; return 0; } /* * start humidity reading @return 0 if all OK */ int BMP280_cmdH(){ const uint8_t cmd[2] = {0x03, 0x01}; if(state != RELAX){ return 1; } bmpstatus = BMP280_BUSY; i2c_status st = i2c_7bit_send(cmd, 2); if(st != I2C_OK){ bmpstatus = BMP280_ERR; return 1; } state = WAITFORH; DBG("Wait for H\n"); return 0; } int32_t BMP280_getT(){ // T*10 if(bmpstatus != BMP280_TRDY) return -5000; DBG("TH="); DBG(u2str(TH)); DBG("\n"); TH >>= 2; uint32_t d = (TH*10)/32 - 500; bmpstatus = BMP280_RELAX; return d; } uint32_t BMP280_getH(){ // hum * 10 if(bmpstatus != BMP280_HRDY) return 5000; TH >>= 4; uint32_t d = (TH*10)/16 - 240; bmpstatus = BMP280_RELAX; return d; } /* * process state machine */ void BMP280_process(){ uint8_t b, d[2]; i2c_status st; if(state == RELAX) return; if(state == WAITFORH || state == WAITFORT){ // poll RDY DBG("Poll\n"); if((st = i2c_7bit_send_onebyte(0, 0)) == I2C_OK){ DBG("0 sent\n"); if(i2c_7bit_receive_onebyte(&b, 1) == I2C_OK){ DBG("received: "); DBG(u2str(b)); DBG("\n"); if(b) return; // !RDY if((st = i2c_7bit_send_onebyte(1, 0)) == I2C_OK){ DBG("sent 1\n"); if((st = i2c_7bit_receive_twobytes(d)) == I2C_OK){ DBG("got data: "); DBG(u2str(d[0])); DBG(" "); DBG(u2str(d[1])); DBG("\n"); bmpstatus = (state == WAITFORH) ? BMP280_HRDY : BMP280_TRDY; TH = (d[0]<<8) | d[1]; } } state = RELAX; if(st != I2C_OK){ bmpstatus = BMP280_ERR; } } }else{ state = RELAX; bmpstatus = BMP280_ERR; } } } #endif