/* * adc.c - functions for Sharp 2Y0A02 distance meter & photosensor * * Copyright 2015 Edward V. Emelianov * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, * MA 02110-1301, USA. */ #include "adc.h" #include "main.h" uint16_t ADC_value[ADC_CHANNEL_NUMBER]; // Values of ADC uint16_t ADC_trig_val[2]; // -//- at trigger time void init_adc_sensor(){ // we will use ADC1 channel 0 for IR sensor & ADC1 channel 1 for laser's photoresistor uint8_t adc_channel_array[ADC_CHANNEL_NUMBER] = {0,1,6}; // Make sure the ADC doesn't run during config adc_off(ADC1); // enable ADC & PA0/PA1 clocking rcc_peripheral_enable_clock(&RCC_APB2ENR, RCC_APB2ENR_ADC1EN | RCC_APB2ENR_IOPAEN); rcc_set_adcpre(RCC_CFGR_ADCPRE_PCLK2_DIV4); gpio_set_mode(GPIOA, GPIO_MODE_INPUT, GPIO_CNF_INPUT_ANALOG, GPIO0 | GPIO1); rcc_periph_clock_enable(RCC_DMA1); // enable DMA for ADC values storing // Configure ADC as continuous scan mode with DMA ADC1_CR1 = ADC_CR1_SCAN; // enable scan mode // set sample time on channels 1&2: 239.5 cycles for better results ADC1_SMPR2 = 0x3f; dma_channel_reset(DMA1, DMA_CHANNEL1); DMA1_CPAR1 = (uint32_t) &(ADC_DR(ADC1)); DMA1_CMAR1 = (uint32_t) ADC_value; DMA1_CNDTR1 = ADC_CHANNEL_NUMBER; DMA1_CCR1 = DMA_CCR_MINC | DMA_CCR_PSIZE_16BIT | DMA_CCR_MSIZE_16BIT | DMA_CCR_CIRC | DMA_CCR_PL_HIGH | DMA_CCR_EN; // continuous conv, enable ADC & DMA ADC1_CR2 = ADC_CR2_CONT | ADC_CR2_ADON | ADC_CR2_DMA; // set channels adc_set_regular_sequence(ADC1, ADC_CHANNEL_NUMBER, adc_channel_array); // reset calibration registers & start calibration ADC1_CR2 |= ADC_CR2_RSTCAL; while(ADC1_CR2 & ADC_CR2_RSTCAL); // wait for registers reset ADC1_CR2 |= ADC_CR2_CAL; while(ADC1_CR2 & ADC_CR2_CAL); // wait for calibration ends nvic_enable_irq(NVIC_ADC1_2_IRQ); ADC1_CR2 |= ADC_CR2_SWSTART; // turn on ADC - to do it we need set ADC_CR2_ADON again! ADC1_CR2 |= ADC_CR2_ADON; } adwd_stat adc_status[ADC_CHANNEL_NUMBER] = {ADWD_MID, ADWD_MID, ADWD_MID}; // levels for thresholding const uint16_t ADC_lowlevel[2] = {1800, 2700}; // signal if ADC value < lowlevel const uint16_t ADC_midlevel[2] = {2000, 3000}; // when transit through midlevel set status as ADWD_MID const uint16_t ADC_highlevel[2]= {2200, 5000}; // signal if ADC value > highlevel void poll_ADC(){ int i; for(i = 0; i < 2; ++i){ if(adc_ms[i] != DIDNT_TRIGGERED) continue; uint16_t val = ADC_value[i]; adwd_stat st = adc_status[i]; if(val > ADC_highlevel[i]){ // watchdog event on high level if(st != ADWD_HI){ adc_ms[i] = Timer; memcpy(&adc_time[i], ¤t_time, sizeof(curtime)); adc_status[i] = ADWD_HI; ADC_trig_val[i] = val; } }else if(val < ADC_lowlevel[i]){ // watchdog event on low level if(st != ADWD_LOW){ adc_ms[i] = Timer; memcpy(&adc_time[i], ¤t_time, sizeof(curtime)); adc_status[i] = ADWD_LOW; ADC_trig_val[i] = val; } }else if((st == ADWD_HI && val < ADC_midlevel[i]) || (st == ADWD_LOW && val > ADC_midlevel[i])){ adc_status[i] = ADWD_MID; if(adc_ms[i] == Timer) // remove noice adc_ms[i] = DIDNT_TRIGGERED; } } }