/* * This file is part of the fx3u project. * Copyright 2024 Edward V. Emelianov . * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #include "can.h" #include "canproto.h" #include "flash.h" #include "hardware.h" /* #ifdef EBUG #include "strfunc.h" #include "usart.h" #endif */ /* pinout: Xn - inputs, Yn - outputs, ADCn - ADC inputs | **Pin #** | **Pin name ** | **function** | **settings** | **comment ** | | --------- | ------------- | ------------ | ---------------------- | --------------------------------------- | | 15 | PC0/adcin10 | ADC4 | ADC in | current in (0..20mA) | | 16 | PC1/adcin11 | ADC5 | ADC in | current in | | 17 | PC2/adcin12 | ADC6 | ADC in | right potentiometer | | 18 | PC3/adcin13 | ADC7 | ADC in | left pot | | 23 | PA0 | Y3 | PPOUT | | | 24 | PA1/adcin1 | ADC0 | ADC in | voltage in (up to 11V) | | 25 | PA2 | Y11 | PPOUT | | | 26 | PA3/adcin3 | ADC1 | ADC in | voltage in (up to 11V) | | 31 | PA6 | Y10 | PPOUT | | | 32 | PA7 | Y7 | PPOUT | | | 33 | PC4/adcin14 | ADC2 | ADC in | voltage in | | 34 | PC5/adcin15 | ADC3 | ADC in | current in | | 37 | PB2/boot1 | PROG SW | PUIN | onboard switch "Prog" (X8!!!) | | 38 | PE7 | X14 | PUIN | | | 39 | PE8 | X15 | PUIN | | | 40 | PE9 | X12 | PUIN | | | 41 | PE10 | X13 | PUIN | | | 42 | PE11 | X10 | PUIN | | | 43 | PE12 | X11 | PUIN | | | 44 | PE13 | X6 | PUIN | | | 45 | PE14 | X7 | PUIN | | | 46 | PE15 | X4 | PUIN | | | 47 | PB10 | X5 | PUIN | | | 48 | PB11 | X2 | PUIN | | | 51 | PB12 | X3 | PUIN | | | 52 | PB13 | X0 | PUIN | | | 53 | PB14 | X1 | PUIN | | | 54 | PB15 | Y6 | PPOUT | | | 57 | PD10 | LED | PPOUT | onboard LED "RUN" | | 59 | PD12 | Y5 | PPOUT | | | 64 | PC7 | | (FLIN) | (Not now) extern 24V power detect | | 65 | PC8 | Y1 | PPOUT | | | 66 | PC9 | Y0 | PPOUT | | | 67 | PA8 | Y2 | PPOUT | | | 68 | PA9 | RS TX | AFPP | | | 69 | PA10 | RS RX | FLIN | | | 76 | PA14/SWCLK | 485 DE | PPOUT | RS-485 Data Tx Enable | | 78 | PC10 | 485 TX | AFPP | RS-485 Tx | | 79 | PC11 | 485 RX | FLIN | RS-485 Rx | | 81 | PD0 | CAN RX | FLIN | | | 82 | PD1 | CAN TX | AFPP | | | 89 | PB3/JTDO | Y4 | PPOUT | | | | | | | | | | | | | | | | | | | | */ void gpio_setup(void){ // PD0 & PD1 (CAN) setup in can.c; PA9 & PA10 (USART) in usart.c RCC->APB2ENR |= RCC_APB2ENR_IOPAEN | RCC_APB2ENR_IOPBEN | RCC_APB2ENR_IOPCEN | RCC_APB2ENR_IOPDEN | RCC_APB2ENR_IOPEEN | RCC_APB2ENR_AFIOEN; // Turn off JTAG/SWD to use PA14 AFIO->MAPR |= AFIO_MAPR_SWJ_CFG_DISABLE; // be sure that all OK // __ISB(); // __DSB(); // pullups & initial values GPIOA->ODR = 0; GPIOB->ODR = (1<<2) | (1<<10) | (1<<11) | (1<<12) | (1<<13) | (1<<14); GPIOC->ODR = 0; GPIOD->ODR = (1<<10); // turn off LED GPIOE->ODR = (1<<7) | (1<<8) | (1<<9) | (1<<10) | (1<<11) | (1<<12) | (1<<13) | (1<<14) | (1<<15); // configuration GPIOA->CRL = CRL(0, CNF_PPOUTPUT|MODE_NORMAL) | CRL(1, CNF_ANALOG) | CRL(2, CNF_PPOUTPUT|MODE_NORMAL) | CRL(3, CNF_ANALOG) | CRL(6, CNF_PPOUTPUT|MODE_NORMAL) | CRL(7, CNF_PPOUTPUT|MODE_NORMAL); //GPIOA->CRH = CRH(8, CNF_PPOUTPUT|MODE_NORMAL) | CRH(14, CNF_PPOUTPUT|MODE_NORMAL); GPIOA->CRH = CRH(8, CNF_PPOUTPUT|MODE_NORMAL) | CRH(14, CNF_ODOUTPUT|MODE_NORMAL); GPIOB->CRL = CRL(2, CNF_PUDINPUT) | CRL(3, CNF_PPOUTPUT|MODE_NORMAL); GPIOB->CRH = CRH(10, CNF_PUDINPUT) | CRH(11, CNF_PUDINPUT) | CRH(12, CNF_PUDINPUT) | CRH(13, CNF_PUDINPUT) | CRH(14, CNF_PUDINPUT) | CRH(15, CNF_PPOUTPUT|MODE_NORMAL); GPIOC->CRL = CRL(0, CNF_ANALOG) | CRL(1, CNF_ANALOG) | CRL(4, CNF_ANALOG) | CRL(5, CNF_ANALOG); GPIOC->CRH = CRH(8, CNF_PPOUTPUT|MODE_NORMAL) | CRH(9, CNF_PPOUTPUT|MODE_NORMAL); GPIOD->CRL = 0; GPIOD->CRH = CRH(10, CNF_PPOUTPUT|MODE_NORMAL) | CRH(12, CNF_PPOUTPUT|MODE_NORMAL); GPIOE->CRL = CRL(7, CNF_PUDINPUT); GPIOE->CRH = CRH(8, CNF_PUDINPUT) | CRH(9, CNF_PUDINPUT) | CRH(10, CNF_PUDINPUT) | CRH(11, CNF_PUDINPUT) | CRH(12, CNF_PUDINPUT) | CRH(13, CNF_PUDINPUT) | CRH(14, CNF_PUDINPUT) | CRH(15, CNF_PUDINPUT); } void iwdg_setup(){ uint32_t tmout = 16000000; RCC->CSR |= RCC_CSR_LSION; while((RCC->CSR & RCC_CSR_LSIRDY) != RCC_CSR_LSIRDY){if(--tmout == 0) break;} IWDG->KR = IWDG_START; IWDG->KR = IWDG_WRITE_ACCESS; IWDG->PR = IWDG_PR_PR_1; IWDG->RLR = 1250; tmout = 16000000; while(IWDG->SR){if(--tmout == 0) break;} IWDG->KR = IWDG_REFRESH; } typedef struct{ GPIO_TypeDef* port; // GPIOx or NULL if no such pin uint16_t pin; // (1 << pin) } pin_t; // input pins (X0..X15) static const pin_t IN[INMAX+1] = { // youbannye uskoglazye pidarasy! Ready to fuck their own mother to save kopeyka {GPIOB, 1<<13}, // X0 - PB13 {GPIOB, 1<<14}, // X1 - PB14 {GPIOB, 1<<11}, // X2 - PB11 {GPIOB, 1<<12}, // X3 - PB12 {GPIOE, 1<<15}, // X4 - PE15 {GPIOB, 1<<10}, // X5 - PB10 {GPIOE, 1<<13}, // X6 - PE13 {GPIOE, 1<<14}, // X7 - PE14 {GPIOB, 1<<2}, // X8 - onboard switch {NULL, 0}, // X9 - absent {GPIOE, 1<<11}, // X10 - PE11 {GPIOE, 1<<12}, // X11 - PE12 {GPIOE, 1<<9}, // X12 - PE9 {GPIOE, 1<<10}, // X13 - PE10 {GPIOE, 1<<7}, // X14 - PE7 {GPIOE, 1<<8}, // X15 - PE8 }; // output (relay) pins (Y0..Y15) static const pin_t OUT[OUTMAX+1] = { {GPIOC, 1<<9}, // Y0 - PC9 {GPIOC, 1<<8}, // Y1 - PC8 {GPIOA, 1<<8}, // Y2 - PA8 {GPIOA, 1<<0}, // Y3 - PA0 {GPIOB, 1<<3}, // Y4 - PB3 {GPIOD, 1<<12}, // Y5 - PD12 {GPIOB, 1<<15}, // Y6 - PB15 {GPIOA, 1<<7}, // Y7 - PA7 {NULL, 0}, // Y8 - absent {NULL, 0}, // Y9 - absent {GPIOA, 1<<6}, // Y10 - PA6 {GPIOA, 1<<2}, // Y11 - PA2 }; // bit 1 - input channel is working, 0 - no uint32_t inchannels(){ return 0b1111110011111111; } // bit 1 - input channel is working, 0 - no uint32_t outchannels(){ return 0b110011111111; } // turn on/off onboard LED; if onoff < 0 - return current state uint8_t LED(int onoff){ if(onoff > -1){ if(onoff) pin_clear(LEDPORT, LEDPIN); else pin_set(LEDPORT, LEDPIN); } return ((LEDPORT->IDR & LEDPIN) ? 0 : 1); // inverse! } /** * @brief set_relay - turn on/off relay `Nch` (if Nch > OUTMAX - all) * @param Nch - single relay channel No or >Ymax to set/reset all relays * @param val - value to set/reset/change * @return TRUE if OK, -1 if `Nch` is wrong */ int set_relay(uint8_t Nch, uint32_t val){ int chpin(uint8_t N, uint32_t v){ const pin_t *cur = &OUT[N]; if(NULL == cur->port) return -1; if(v) pin_set(cur->port, cur->pin); else pin_clear(cur->port, cur->pin); return TRUE; } if(Nch > OUTMAX){ // all uint32_t mask = 1; for(uint8_t i = 0; i <= OUTMAX; ++i, mask <<= 1){ chpin(i, val & mask); } return TRUE; } return chpin(Nch, val); } static int readpins(uint8_t Nch, const pin_t *pins, uint8_t max){ int gpin(uint8_t N){ const pin_t *cur = &pins[N]; if(NULL == cur->port) return -1; return pin_read(cur->port, cur->pin); } if(Nch > max){ // all int val = 0; for(int i = max; i > -1; --i){ val <<= 1; int p = gpin(i); if(p == 1){ //usart_send("pin"); usart_send(u2str(i)); usart_send("=1\n"); val |= p; } } //usart_send("readpins, val="); usart_send(i2str(val)); newline(); return val; } return gpin(Nch); } /** * @brief get_relay - get `Nch` relay state (if Nch > OUTMAX - all) * @param Nch - single relay channel No or <0 for all * @return current state or -1 if `Nch` is wrong */ int get_relay(uint8_t Nch){ return readpins(Nch, OUT, OUTMAX); } /** * @brief get_esw - get input `Nch` state (or all if Nch > INMAX) * @param Nch - channel number or -1 for all * @return ESW state or -1 if `Nch` is wrong */ int get_esw(uint8_t Nch){ return readpins(Nch, IN, INMAX); } static uint32_t ESW_ab_values = 0; // current anti-bounce values of ESW static uint32_t lastET[INMAX+1] = {0}; // last changing time // anti-bouce process esw void proc_esw(){ uint32_t mask = 1, oldesw = ESW_ab_values; for(uint8_t i = 0; i <= INMAX; ++i, mask <<= 1){ if(Tms - lastET[i] < the_conf.bouncetime) continue; if(NULL == IN[i].port) continue; uint32_t now = pin_read(IN[i].port, IN[i].pin); if(now) ESW_ab_values |= mask; else ESW_ab_values &= ~mask; lastET[i] = Tms; } if(oldesw != ESW_ab_values){ //usart_send("esw="); usart_send(u2str(ESW_ab_values)); newline(); CAN_message msg = {.ID = the_conf.CANIDout, .length = 8}; MSG_SET_CMD(msg, CMD_GETESW); MSG_SET_U32(msg, ESW_ab_values); uint32_t Tstart = Tms; while(Tms - Tstart < SEND_TIMEOUT_MS){ if(CAN_OK == CAN_send(&msg)) break; } if(the_conf.flags.sw_send_relay_cmd){ // send also CMD_RELAY MSG_SET_CMD(msg, CMD_RELAY); Tstart = Tms; while(Tms - Tstart < SEND_TIMEOUT_MS){ if(CAN_OK == CAN_send(&msg)) break; } } } } // get all anti-bounce ESW values uint32_t get_ab_esw(){ return ESW_ab_values; }