SteppersCAN: add CAN & start working on steppers

This commit is contained in:
eddyem 2020-04-18 20:11:59 +03:00
parent e51a45040b
commit 131f6fab44
29 changed files with 1939 additions and 510 deletions

View File

@ -45,9 +45,9 @@ OBJS += $(STARTUP)
# dependencies: we need them to recompile files if their headers-dependencies changed
DEPS := $(OBJS:.o=.d)
INC_DIR ?= ../inc
INC_DIR ?= ../../inc
INCLUDE := -I$(INC_DIR)/F0 -I$(INC_DIR)/cm
INCLUDE := -I$(INC_DIR)/Fx -I$(INC_DIR)/cm
LIB_DIR := $(INC_DIR)/ld
###############################################################################

View File

@ -2,3 +2,60 @@ Development board for TMC2130/DRV8825 stepper driver modules
============================================================
Stepper control over CAN bus, RS-485 and USB.
Pinout
======
PA0 - AIN0 (12V voltage control) AIN
PA1 - AIN1 (5V voltage control) AIN
PA3 - STEP timer
PA4 - DIR PP
PA5 - SCK - CFG1 - microstepping1 SPI/PP
PA6 - MISO - CFG0 - ~RST SPI/PP
PA7 - MOSI - CFG1 - microstepping0 SPI/PP
PA8 - Tx|Rx (RS485 direction) PP
PA9 - Tx (RS485) USART
PA10 - Rx (RS485) USART
PA11 - DM (USB) USB
PA12 - DP (USB) USB
PA13 - SWDIO (st-link) SWD
PA14 - SWCLK (st-link) SWD
PB0 - ESW0 PUin
PB1 - ESW1 (limit switches or other inputs) PUin
PB2 - ESW2 PUin
PB8 - CAN_Rx (CAN) CAN
PB9 - CAN_Tx (CAN) CAN
PB10 - ESW3 PUin
PB12 - brdaddr0 PUin
PB13 - brdaddr1 (bits of board address switch) PUin
PB14 - brdaddr2 PUin
PB15 - brdaddr3 PUin
PC13 - CFG6 - ~EN PP
PC14 - CFG3 - ~CS - microstepping2 PP
PC15 - ~SLEEP PP
PF0 - VIO_on (turn ON Vdd of driver 4988 or 2130) OD
PF1 - ~FAULT (~fault output of 8825) FLin
RS-485
======
The same protocol as USB, but 1st symbol should be BRDADDR
CAN
===
Data format: big-endian. For example 0x03 0x04 0x05 0x0a means 0x0304050a.
Messages with variable width.
IN messages have ID = 0x70 | (devNo<<1), devNo - number, selected by jumpers @ board.
OUT messages have ID=IN+1.
zeros byte of data is command. All other - data.
TODO
====
Add linecoding_handler to change RS-485 speed due to USB connection settings?

View File

@ -0,0 +1,356 @@
/*
* geany_encoding=koi8-r
* can.c
*
* Copyright 2018 Edward V. Emelianov <eddy@sao.ru, edward.emelianoff@gmail.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
* MA 02110-1301, USA.
*
*/
#include "can.h"
#include "hardware.h"
#include "proto.h"
#include "usart.h"
#include <string.h> // memcpy
// circular buffer for received messages
static CAN_message messages[CAN_INMESSAGE_SIZE];
static uint8_t first_free_idx = 0; // index of first empty cell
static int8_t first_nonfree_idx = -1; // index of first data cell
static uint16_t oldspeed = 100; // speed of last init
static uint16_t CANID = 0xFFFF;
uint16_t masterID = 0;
static CAN_status can_status = CAN_STOP;
static void can_process_fifo(uint8_t fifo_num);
//static CAN_message loc_flood_msg;
//static CAN_message *flood_msg = NULL; // == loc_flood_msg - to flood
CAN_status CAN_get_status(){
CAN_status st = can_status;
// give overrun message only once
if(st == CAN_FIFO_OVERRUN) can_status = CAN_READY;
return st;
}
// push next message into buffer; return 1 if buffer overfull
static int CAN_messagebuf_push(CAN_message *msg){
//MSG("Try to push\n");
if(first_free_idx == first_nonfree_idx) return 1; // no free space
if(first_nonfree_idx < 0) first_nonfree_idx = 0; // first message in empty buffer
memcpy(&messages[first_free_idx++], msg, sizeof(CAN_message));
// need to roll?
if(first_free_idx == CAN_INMESSAGE_SIZE) first_free_idx = 0;
return 0;
}
// pop message from buffer
CAN_message *CAN_messagebuf_pop(){
if(first_nonfree_idx < 0) return NULL;
CAN_message *msg = &messages[first_nonfree_idx++];
if(first_nonfree_idx == CAN_INMESSAGE_SIZE) first_nonfree_idx = 0;
if(first_nonfree_idx == first_free_idx){ // buffer is empty - refresh it
first_nonfree_idx = -1;
first_free_idx = 0;
}
return msg;
}
// get CAN address data from GPIO pins
void readCANID(){
uint8_t CAN_addr = refreshBRDaddr();
CANID = (CAN_ID_PREFIX & CAN_ID_MASK) | (CAN_addr << 1);
masterID = CANID + 1;
}
uint16_t getCANID(){
return CANID;
}
void CAN_reinit(uint16_t speed){
readCANID();
CAN->TSR |= CAN_TSR_ABRQ0 | CAN_TSR_ABRQ1 | CAN_TSR_ABRQ2;
RCC->APB1RSTR |= RCC_APB1RSTR_CANRST;
RCC->APB1RSTR &= ~RCC_APB1RSTR_CANRST;
CAN_setup(speed);
}
/*
Can filtering: FSCx=0 (CAN->FS1R) -> 16-bit identifiers
MASK: FBMx=0 (CAN->FM1R), two filters (n in FR1 and n+1 in FR2)
ID: CAN->sFilterRegister[x].FRn[0..15]
MASK: CAN->sFilterRegister[x].FRn[16..31]
FR bits: STID[10:0] RTR IDE EXID[17:15]
LIST: FBMx=1, four filters (n&n+1 in FR1, n+2&n+3 in FR2)
IDn: CAN->sFilterRegister[x].FRn[0..15]
IDn+1: CAN->sFilterRegister[x].FRn[16..31]
*/
/*
Can timing: main freq - APB (PLL=48MHz)
segment = 1sync + TBS1 + TBS2, sample point is between TBS1 and TBS2,
so if TBS1=4 and TBS2=3, sum=8, bit sampling freq is 48/8 = 6MHz
-> to get 100kbps we need prescaler=60
250kbps - 24
500kbps - 12
1MBps - 6
*/
// speed - in kbps
void CAN_setup(uint16_t speed){
if(speed == 0) speed = oldspeed;
else if(speed < 50) speed = 50;
else if(speed > 3000) speed = 3000;
oldspeed = speed;
uint32_t tmout = 16000000;
if(CANID == 0xFFFF) readCANID();
// Configure GPIO: PB8 - CAN_Rx, PB9 - CAN_Tx
/* (1) Select AF mode (10) on PB8 and PB9 */
/* (2) AF4 for CAN signals */
GPIOB->MODER = (GPIOB->MODER & ~(GPIO_MODER_MODER8 | GPIO_MODER_MODER9))
| (GPIO_MODER_MODER8_AF | GPIO_MODER_MODER9_AF); /* (1) */
GPIOB->AFR[1] = (GPIOB->AFR[1] &~ (GPIO_AFRH_AFRH0 | GPIO_AFRH_AFRH1))\
| (4 << (0 * 4)) | (4 << (1 * 4)); /* (2) */
/* Enable the peripheral clock CAN */
RCC->APB1ENR |= RCC_APB1ENR_CANEN;
/* Configure CAN */
/* (1) Enter CAN init mode to write the configuration */
/* (2) Wait the init mode entering */
/* (3) Exit sleep mode */
/* (4) Normal mode, set timing to 100kb/s: TBS1 = 4, TBS2 = 3, prescaler = 60 */
/* (5) Leave init mode */
/* (6) Wait the init mode leaving */
/* (13) Set error interrupts enable */
CAN->MCR |= CAN_MCR_INRQ; /* (1) */
while((CAN->MSR & CAN_MSR_INAK)!=CAN_MSR_INAK) /* (2) */
{
if(--tmout == 0) break;
}
CAN->MCR &=~ CAN_MCR_SLEEP; /* (3) */
CAN->MCR |= CAN_MCR_ABOM; /* allow automatically bus-off */
CAN->BTR |= 2 << 20 | 3 << 16 | (6000/speed) << 0; /* (4) */
CAN->MCR &=~ CAN_MCR_INRQ; /* (5) */
tmout = 16000000;
while((CAN->MSR & CAN_MSR_INAK)==CAN_MSR_INAK) if(--tmout == 0) break; /* (6) */
// init filter: accept data only for this board
can_accept_one();
CAN->IER |= CAN_IER_ERRIE | CAN_IER_FOVIE0 | CAN_IER_FOVIE1; /* (13) */
/* Configure IT */
/* (14) Set priority for CAN_IRQn */
/* (15) Enable CAN_IRQn */
NVIC_SetPriority(CEC_CAN_IRQn, 0); /* (14) */
NVIC_EnableIRQ(CEC_CAN_IRQn); /* (15) */
can_status = CAN_READY;
}
void can_proc(){
// check for messages in FIFO0 & FIFO1
if(CAN->RF0R & CAN_RF0R_FMP0){
can_process_fifo(0);
}
if(CAN->RF1R & CAN_RF1R_FMP1){
can_process_fifo(1);
}
IWDG->KR = IWDG_REFRESH;
if(CAN->ESR & (CAN_ESR_BOFF | CAN_ESR_EPVF | CAN_ESR_EWGF)){ // much errors - restart CAN BUS
SEND("\nToo much errors, restarting CAN!\n");
SEND("Receive error counter: ");
printu((CAN->ESR & CAN_ESR_REC)>>24);
SEND("\nTransmit error counter: ");
printu((CAN->ESR & CAN_ESR_TEC)>>16);
SEND("\nLast error code: ");
int lec = (CAN->ESR & CAN_ESR_LEC) >> 4;
const char *errmsg = "No";
switch(lec){
case 1: errmsg = "Stuff"; break;
case 2: errmsg = "Form"; break;
case 3: errmsg = "Ack"; break;
case 4: errmsg = "Bit recessive"; break;
case 5: errmsg = "Bit dominant"; break;
case 6: errmsg = "CRC"; break;
case 7: errmsg = "(set by software)"; break;
}
SEND(errmsg); SEND(" error\n");
if(CAN->ESR & CAN_ESR_BOFF) SEND("Bus off");
if(CAN->ESR & CAN_ESR_EPVF) SEND("Passive error limit");
if(CAN->ESR & CAN_ESR_EWGF) SEND("Error counter limit");
// request abort for all mailboxes
CAN->TSR |= CAN_TSR_ABRQ0 | CAN_TSR_ABRQ1 | CAN_TSR_ABRQ2;
// reset CAN bus
RCC->APB1RSTR |= RCC_APB1RSTR_CANRST;
RCC->APB1RSTR &= ~RCC_APB1RSTR_CANRST;
CAN_setup(0);
}
/*
static uint32_t lastFloodTime = 0;
if(flood_msg && (Tms - lastFloodTime) > (FLOOD_PERIOD_MS-1)){ // flood every ~5ms
lastFloodTime = Tms;
can_send(flood_msg->data, flood_msg->length, flood_msg->ID);
}*/
}
CAN_status can_send(uint8_t *msg, uint8_t len, uint16_t target_id){
uint8_t mailbox = 0;
// check first free mailbox
if(CAN->TSR & (CAN_TSR_TME)){
mailbox = (CAN->TSR & CAN_TSR_CODE) >> 24;
}else{ // no free mailboxes
return CAN_BUSY;
}
CAN_TxMailBox_TypeDef *box = &CAN->sTxMailBox[mailbox];
uint32_t lb = 0, hb = 0;
switch(len){
case 8:
hb |= (uint32_t)msg[7] << 24;
__attribute__((fallthrough));
case 7:
hb |= (uint32_t)msg[6] << 16;
__attribute__((fallthrough));
case 6:
hb |= (uint32_t)msg[5] << 8;
__attribute__((fallthrough));
case 5:
hb |= (uint32_t)msg[4];
__attribute__((fallthrough));
case 4:
lb |= (uint32_t)msg[3] << 24;
__attribute__((fallthrough));
case 3:
lb |= (uint32_t)msg[2] << 16;
__attribute__((fallthrough));
case 2:
lb |= (uint32_t)msg[1] << 8;
__attribute__((fallthrough));
default:
lb |= (uint32_t)msg[0];
}
box->TDLR = lb;
box->TDHR = hb;
box->TDTR = len;
box->TIR = (target_id & 0x7FF) << 21 | CAN_TI0R_TXRQ;
return CAN_OK;
}
/*
void can_send_dummy(){
uint8_t msg = CMD_TOGGLE;
if(CAN_OK != can_send(&msg, 1, TARG_ID)) SEND("Bus busy!\n");
}
void can_send_broadcast(){
uint8_t msg = CMD_BCAST;
if(CAN_OK != can_send(&msg, 1, BCAST_ID)) SEND("Bus busy!\n");
MSG("Broadcast message sent\n");
}
void set_flood(CAN_message *msg){
if(!msg) flood_msg = NULL;
else{
memcpy(&loc_flood_msg, msg, sizeof(CAN_message));
flood_msg = &loc_flood_msg;
}
}*/
static void can_process_fifo(uint8_t fifo_num){
if(fifo_num > 1) return;
CAN_FIFOMailBox_TypeDef *box = &CAN->sFIFOMailBox[fifo_num];
volatile uint32_t *RFxR = (fifo_num) ? &CAN->RF1R : &CAN->RF0R;
// read all
while(*RFxR & CAN_RF0R_FMP0){ // amount of messages pending
// CAN_RDTxR: (16-31) - timestamp, (8-15) - filter match index, (0-3) - data length
CAN_message msg;
uint8_t *dat = msg.data;
uint8_t len = box->RDTR & 0x0f;
msg.length = len;
msg.ID = box->RIR >> 21;
msg.fifoNum = fifo_num; // @parsing only data from FIFO0 will be accepted, FIFO1 is for monitoring
if(len){ // message can be without data
uint32_t hb = box->RDHR, lb = box->RDLR;
switch(len){
case 8:
dat[7] = hb>>24;
__attribute__((fallthrough));
case 7:
dat[6] = (hb>>16) & 0xff;
__attribute__((fallthrough));
case 6:
dat[5] = (hb>>8) & 0xff;
__attribute__((fallthrough));
case 5:
dat[4] = hb & 0xff;
__attribute__((fallthrough));
case 4:
dat[3] = lb>>24;
__attribute__((fallthrough));
case 3:
dat[2] = (lb>>16) & 0xff;
__attribute__((fallthrough));
case 2:
dat[1] = (lb>>8) & 0xff;
__attribute__((fallthrough));
case 1:
dat[0] = lb & 0xff;
}
}
if(CAN_messagebuf_push(&msg)) return; // error: buffer is full, try later
*RFxR |= CAN_RF0R_RFOM0; // release fifo for access to next message
}
*RFxR = 0; // clear FOVR & FULL
}
void cec_can_isr(){
if(CAN->RF0R & CAN_RF0R_FOVR0){ // FIFO overrun
CAN->RF0R &= ~CAN_RF0R_FOVR0;
can_status = CAN_FIFO_OVERRUN;
}
if(CAN->RF1R & CAN_RF1R_FOVR1){
CAN->RF1R &= ~CAN_RF1R_FOVR1;
can_status = CAN_FIFO_OVERRUN;
}
if(CAN->MSR & CAN_MSR_ERRI){ // Error
CAN->MSR &= ~CAN_MSR_ERRI;
// request abort for problem mailbox
if(CAN->TSR & CAN_TSR_TERR0) CAN->TSR |= CAN_TSR_ABRQ0;
if(CAN->TSR & CAN_TSR_TERR1) CAN->TSR |= CAN_TSR_ABRQ1;
if(CAN->TSR & CAN_TSR_TERR2) CAN->TSR |= CAN_TSR_ABRQ2;
}
}
// accept only data for given device @ FIFO0, filter 0
void can_accept_one(){
CAN->FMR = CAN_FMR_FINIT; // Enter filter init mode, (16-bit + mask, bank 0 for FIFO 0)
CAN->FA1R = CAN_FA1R_FACT0; // Acivate filter 0 for ID
// main data - FIFO0, filter0
CAN->FM1R = CAN_FM1R_FBM0; // Identifier list mode
CAN->sFilterRegister[0].FR1 = (CANID << 5) | (0x8f<<16); // Set the Id list
//CAN->sFilterRegister[0].FR2 = (0x8f<<16) | 0x8f;
CAN->FMR &= ~CAN_FMR_FINIT; // Leave filter init
}
// accept everything @ FIFO1, filter 4
void can_accept_any(){
CAN->FMR = CAN_FMR_FINIT;
CAN->FA1R |= CAN_FA1R_FACT1; // Acivate bank 1
CAN->FFA1R = CAN_FFA1R_FFA1; // bank 1 for FIFO1
CAN->FM1R &= ~CAN_FM1R_FBM1; // MASK
CAN->sFilterRegister[1].FR1 = 0; // all IDs
CAN->sFilterRegister[1].FR2 = (0x8f<<16) | 0x8f;
CAN->FMR &= ~CAN_FMR_FINIT;
}

View File

@ -0,0 +1,89 @@
/*
* geany_encoding=koi8-r
* can.h
*
* Copyright 2018 Edward V. Emelianov <eddy@sao.ru, edward.emelianoff@gmail.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
* MA 02110-1301, USA.
*
*/
#pragma once
#ifndef __CAN_H__
#define __CAN_H__
#include "hardware.h"
// default CAN speed - 100kbps
#define CAN_SPEED_DEFAULT 100
// amount of filter banks in STM32F0
#define STM32F0FBANKNO 28
// flood period in milliseconds
#define FLOOD_PERIOD_MS 5
// simple 1-byte commands
//#define CMD_TOGGLE (0xDA)
//#define CMD_BCAST (0xAD)
// mask clearing bits of board address
#define CAN_ID_MASK (0x7E0)
// prefix to make ID from any number
#define CAN_ID_PREFIX (0x70)
// "target" ID: num=0
//#define TARG_ID (CAN_ID_PREFIX & CAN_ID_MASK)
// "broadcast" ID: all ones
//#define BCAST_ID (0x7FF)
// incoming message buffer size
#define CAN_INMESSAGE_SIZE (8)
// CAN message
typedef struct{
uint8_t data[8]; // up to 8 bytes of data
uint8_t length; // data length
//uint8_t filterNo; // filter number
uint8_t fifoNum; // message FIFO number
uint16_t ID; // ID of receiver
} CAN_message;
typedef enum{
CAN_STOP,
CAN_READY,
CAN_BUSY,
CAN_OK,
CAN_FIFO_OVERRUN
} CAN_status;
extern uint16_t masterID; // ID to send answers by CAN
CAN_status CAN_get_status();
void readCANID();
uint16_t getCANID();
void CAN_reinit(uint16_t speed);
void CAN_setup(uint16_t speed);
CAN_status can_send(uint8_t *msg, uint8_t len, uint16_t target_id);
//void can_send_dummy();
//void can_send_broadcast();
void can_proc();
CAN_message *CAN_messagebuf_pop();
void can_accept_any();
void can_accept_one();
//void set_flood(CAN_message *msg);
#endif // __CAN_H__

View File

@ -0,0 +1,101 @@
/*
* geany_encoding=koi8-r
* can_process.c
*
* Copyright 2018 Edward V. Emelianov <eddy@sao.ru, edward.emelianoff@gmail.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
* MA 02110-1301, USA.
*
*/
#include "adc.h"
#include "can.h"
#include "can_process.h"
#include "proto.h"
extern volatile uint32_t Tms; // timestamp data
// v==0 - send V12 & V5
static void senduival(){
uint8_t buf[5];
uint16_t *vals = getUval();
buf[0] = CMD_GETUVAL; // V12 and V5
buf[1] = vals[0] >> 8; // H
buf[2] = vals[0] & 0xff;// L
buf[3] = vals[1] >> 8; // -//-
buf[4] = vals[1] & 0xff;
SEND_CAN(buf, 5);
}
static void sendu16(uint8_t cmd, uint16_t data){
uint8_t buf[3];
buf[0] = cmd;
buf[1] = data >> 8;
buf[2] = data & 0xff;
SEND_CAN(buf, 3);
}
void can_messages_proc(){
CAN_message *can_mesg = CAN_messagebuf_pop();
if(!can_mesg) return; // no data in buffer
uint8_t len = can_mesg->length;
#ifndef EBUG
if(can_mesg->fifoNum == 1){ // not my data - just show it
#endif
if(monitCAN){
printu(Tms);
SEND(" #");
printuhex(can_mesg->ID);
SEND(" (F#"); printu(can_mesg->fifoNum); SEND(")");
for(uint8_t ctr = 0; ctr < len; ++ctr){
SEND(" ");
printuhex(can_mesg->data[ctr]);
}
IWDG->KR = IWDG_REFRESH;
newline(); sendbuf();
}
#ifndef EBUG
return;
}
#endif
IWDG->KR = IWDG_REFRESH;
if(!len) return; // no data in message
uint8_t *data = can_mesg->data;
switch(data[0]){
case CMD_PING: // pong
SEND_CAN(data, 1);
break;
case CMD_GETMCUTEMP:
sendu16(CMD_GETMCUTEMP, (int16_t)getMCUtemp());
break;
case CMD_GETUVAL:
senduival();
break;
case CMD_GETU3V3:
sendu16(CMD_GETU3V3, (uint16_t)getVdd());
break;
}
}
// try to send messages, wait no more than 100ms
CAN_status try2send(uint8_t *buf, uint8_t len, uint16_t id){
uint32_t Tstart = Tms;
while(Tms - Tstart < SEND_TIMEOUT_MS){
if(CAN_OK == can_send(buf, len, id)) return CAN_OK;
IWDG->KR = IWDG_REFRESH;
}
SEND("CAN_BUSY\n");
return CAN_BUSY;
}

View File

@ -0,0 +1,38 @@
/*
* geany_encoding=koi8-r
* can_process.h
*
* Copyright 2018 Edward V. Emelianov <eddy@sao.ru, edward.emelianoff@gmail.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
* MA 02110-1301, USA.
*
*/
#include "can.h"
// timeout for trying to send data
#define SEND_TIMEOUT_MS (10)
// 8-bit commands sent by master
typedef enum{
CMD_PING, // just echo it back
CMD_GETMCUTEMP, // MCU temperature value
CMD_GETUVAL, // answer with values of V12 and V5
CMD_GETU3V3, // answer with values of V3.3
} CAN_commands;
void can_messages_proc();
#define SEND_CAN(a,b) try2send(a, b, masterID)
CAN_status try2send(uint8_t *buf, uint8_t len, uint16_t id);

BIN
F0-nolib/CANbus_stepper/src/canstepper.bin Normal file → Executable file

Binary file not shown.

View File

@ -0,0 +1,235 @@
/*
* geany_encoding=koi8-r
* flash.c
*
* Copyright 2017 Edward V. Emelianov <eddy@sao.ru, edward.emelianoff@gmail.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
* MA 02110-1301, USA.
*
*/
/**
ATTENTION!!
This things works only if you will add next section:
.myvars :
{
. = ALIGN(1024);
__varsstart = ABSOLUTE(.);
KEEP(*(.myvars));
} > rom
after section .data
*/
#include <stm32f0.h>
#include "adc.h"
#include "flash.h"
#include "proto.h" // printout
#include "steppers.h"
#include <string.h> // memcpy
// max amount of Config records stored (will be recalculate in flashstorage_init()
static uint32_t maxCnum = FLASH_BLOCK_SIZE / sizeof(user_conf);
#define USERCONF_INITIALIZER { \
.userconf_sz = sizeof(user_conf) \
,.defflags = 0 \
,.CANspeed = 100 \
,.driver_type = DRV_NONE \
}
static int erase_flash(const void*, const void*);
static int write2flash(const void*, const void*, uint32_t);
// don't write `static` here, or get error:
// 'memcpy' forming offset 8 is out of the bounds [0, 4] of object '__varsstart' with type 'uint32_t'
const user_conf *Flash_Data = (const user_conf *)(&__varsstart);
user_conf the_conf = USERCONF_INITIALIZER;
static int currentconfidx = -1; // index of current configuration
/**
* @brief binarySearch - binary search in flash for last non-empty cell
* any struct searched should have its sizeof() @ the first field!!!
* @param l - left index
* @param r - right index (should be @1 less than last index!)
* @param start - starting address
* @param stor_size - size of structure to search
* @return index of non-empty cell or -1
*/
static int binarySearch(int r, const uint8_t *start, int stor_size){
int l = 0;
while(r >= l){
int mid = l + (r - l) / 2;
const uint8_t *s = start + mid * stor_size;
if(*((const uint16_t*)s) == stor_size){
if(*((const uint16_t*)(s + stor_size)) == 0xffff){ // next is free
return mid;
}else{ // element is to the right
l = mid + 1;
}
}else{ // element is to the left
r = mid - 1;
}
}
return -1; // not found
}
/**
* @brief flashstorage_init - initialization of user conf storage
* run in once @ start
*/
void flashstorage_init(){
if(FLASH_SIZE > 0 && FLASH_SIZE < 20000){
uint32_t flsz = FLASH_SIZE * 1024; // size in bytes
flsz -= (uint32_t)(&__varsstart) - FLASH_BASE;
maxCnum = flsz / sizeof(user_conf);
//SEND("flsz="); printu(flsz);
//SEND("\nmaxCnum="); printu(maxCnum); newline(); sendbuf();
}
// -1 if there's no data at all & flash is clear; maxnum-1 if flash is full
currentconfidx = binarySearch((int)maxCnum-2, (const uint8_t*)Flash_Data, sizeof(user_conf));
if(currentconfidx > -1){
memcpy(&the_conf, &Flash_Data[currentconfidx], sizeof(user_conf));
}
}
// store new configuration
// @return 0 if all OK
int store_userconf(){
// maxnum - 3 means that there always should be at least one empty record after last data
// for binarySearch() checking that there's nothing more after it!
if(currentconfidx > (int)maxCnum - 3){ // there's no more place
currentconfidx = 0;
if(erase_flash(Flash_Data, (&__varsstart))) return 1;
}else ++currentconfidx; // take next data position (0 - within first run after firmware flashing)
return write2flash((const void*)&Flash_Data[currentconfidx], &the_conf, sizeof(the_conf));
}
static int write2flash(const void *start, const void *wrdata, uint32_t stor_size){
int ret = 0;
if (FLASH->CR & FLASH_CR_LOCK){ // unloch flash
FLASH->KEYR = FLASH_KEY1;
FLASH->KEYR = FLASH_KEY2;
}
while (FLASH->SR & FLASH_SR_BSY);
if(FLASH->SR & FLASH_SR_WRPRTERR){
MSG("Can't remove write protection\n");
return 1; // write protection
}
FLASH->SR = FLASH_SR_EOP | FLASH_SR_PGERR | FLASH_SR_WRPRTERR; // clear all flags
FLASH->CR |= FLASH_CR_PG;
const uint16_t *data = (const uint16_t*) wrdata;
volatile uint16_t *address = (volatile uint16_t*) start;
uint32_t i, count = (stor_size + 1) / 2;
for (i = 0; i < count; ++i){
IWDG->KR = IWDG_REFRESH;
*(volatile uint16_t*)(address + i) = data[i];
while (FLASH->SR & FLASH_SR_BSY);
if(FLASH->SR & FLASH_SR_PGERR){
ret = 1; // program error - meet not 0xffff
MSG("FLASH_SR_PGERR\n");
break;
}else while (!(FLASH->SR & FLASH_SR_EOP));
FLASH->SR = FLASH_SR_EOP | FLASH_SR_PGERR | FLASH_SR_WRPRTERR;
}
FLASH->CR |= FLASH_CR_LOCK; // lock it back
FLASH->CR &= ~(FLASH_CR_PG);
MSG("Flash stored\n");
return ret;
}
/**
* @brief erase_flash - erase N pages of flash memory
* @param start - first address
* @param end - last address (or NULL if need to erase all flash remaining)
* @return 0 if succeed
*/
static int erase_flash(const void *start, const void *end){
int ret = 0;
uint32_t nblocks = 1, flsz = 0;
if(!end){ // erase all remaining
if(FLASH_SIZE > 0 && FLASH_SIZE < 20000){
flsz = FLASH_SIZE * 1024; // size in bytes
flsz -= (uint32_t)start - FLASH_BASE;
}
}else{ // erase a part
flsz = (uint32_t)end - (uint32_t)start;
}
nblocks = flsz / FLASH_BLOCK_SIZE;
if(nblocks == 0 || nblocks >= FLASH_SIZE) return 1;
for(uint32_t i = 0; i < nblocks; ++i){
#ifdef EBUG
SEND("Try to erase page #"); printu(i); newline(); sendbuf();
#endif
IWDG->KR = IWDG_REFRESH;
/* (1) Wait till no operation is on going */
/* (2) Clear error & EOP bits */
/* (3) Check that the Flash is unlocked */
/* (4) Perform unlock sequence */
while ((FLASH->SR & FLASH_SR_BSY) != 0){} /* (1) */
FLASH->SR = FLASH_SR_EOP | FLASH_SR_PGERR | FLASH_SR_WRPRTERR; /* (2) */
/* if (FLASH->SR & FLASH_SR_EOP){
FLASH->SR |= FLASH_SR_EOP;
}*/
if ((FLASH->CR & FLASH_CR_LOCK) != 0){ /* (3) */
FLASH->KEYR = FLASH_KEY1; /* (4) */
FLASH->KEYR = FLASH_KEY2;
}
/* (1) Set the PER bit in the FLASH_CR register to enable page erasing */
/* (2) Program the FLASH_AR register to select a page to erase */
/* (3) Set the STRT bit in the FLASH_CR register to start the erasing */
/* (4) Wait until the EOP flag in the FLASH_SR register set */
/* (5) Clear EOP flag by software by writing EOP at 1 */
/* (6) Reset the PER Bit to disable the page erase */
FLASH->CR |= FLASH_CR_PER; /* (1) */
FLASH->AR = (uint32_t)Flash_Data + i*FLASH_BLOCK_SIZE; /* (2) */
FLASH->CR |= FLASH_CR_STRT; /* (3) */
while(!(FLASH->SR & FLASH_SR_EOP));
FLASH->SR |= FLASH_SR_EOP; /* (5)*/
if(FLASH->SR & FLASH_SR_WRPRTERR){ /* Check Write protection error */
ret = 1;
MSG("Write protection error!\n");
FLASH->SR |= FLASH_SR_WRPRTERR; /* Clear the flag by software by writing it at 1*/
break;
}
FLASH->CR &= ~FLASH_CR_PER; /* (6) */
}
return ret;
}
void dump_userconf(){
SEND("userconf_addr="); printuhex((uint32_t)Flash_Data);
SEND("\nuserconf_sz="); printu(the_conf.userconf_sz);
SEND("\nflags="); printuhex(the_conf.defflags);
SEND("\nCANspeed="); printu(the_conf.CANspeed);
SEND("\ndriver_type=");
const char *p = "NONE";
switch(the_conf.driver_type){
case DRV_2130:
p = "TMC2130";
break;
case DRV_4988:
p = "A4988";
break;
case DRV_8825:
p = "DRV8825";
break;
}
SEND(p);
newline();
sendbuf();
}

View File

@ -0,0 +1,51 @@
/*
* flash.h
*
* Copyright 2017 Edward V. Emelianov <eddy@sao.ru, edward.emelianoff@gmail.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
* MA 02110-1301, USA.
*
*/
#pragma once
#ifndef __FLASH_H__
#define __FLASH_H__
#include "hardware.h"
#define FLASH_BLOCK_SIZE (1024)
#define FLASH_SIZE_REG ((uint32_t)0x1FFFF7CC)
#define FLASH_SIZE *((uint16_t*)FLASH_SIZE_REG)
/*
* struct to save user configurations
*/
typedef struct __attribute__((packed, aligned(4))){
uint16_t userconf_sz; // "magick number"
uint16_t CANspeed; // default CAN speed
uint8_t defflags; // default flags
uint8_t driver_type; // user's settings: type of stepper's driver
} user_conf;
extern user_conf the_conf; // global user config (read from FLASH to RAM)
// data from ld-file: start address of storage
extern const uint32_t __varsstart;
void flashstorage_init();
int store_userconf();
void dump_userconf();
#endif // __FLASH_H__

View File

@ -1,12 +1,10 @@
/*
* geany_encoding=koi8-r
* hardware.c - hardware-dependent macros & functions
* This file is part of the Stepper project.
* Copyright 2020 Edward V. Emelianov <edward.emelianoff@gmail.com>.
*
* Copyright 2018 Edward V. Emelianov <eddy@sao.ru, edward.emelianoff@gmail.com>
*
* This program is free software; you can redistribute it and/or modify
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
@ -15,10 +13,7 @@
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
* MA 02110-1301, USA.
*
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "hardware.h"
@ -73,14 +68,44 @@ void iwdg_setup(){
IWDG->KR = IWDG_REFRESH; /* (6) */
}
void gpio_setup(void){
/*
MODER - input/output/alternate/analog
OTYPER - pushpull/opendrain
OSPEEDR - low(x0)/med(01)/high(11)
PUPDR - no/pullup/pulldown/reserved
AFRL, AFRH - alternate fno
*/
void gpio_setup(){
// here we turn on clocking for all GPIO used
RCC->AHBENR |= RCC_AHBENR_GPIOAEN | RCC_AHBENR_GPIOBEN | RCC_AHBENR_GPIOCEN | RCC_AHBENR_GPIOFEN
| RCC_AHBENR_DMAEN;
// setup pins need @start: Vio_ON (PF0, opendrain), ~FAULT (PF1, floating IN),
// ~SLEEP (PC15, pushpull), DIR (PA4, pushpull), ~EN (PC13, pushpull)
// ~CS, microstepping2, (PC14, pushpull
// PA8 - Tx/Rx
GPIOA->MODER = GPIO_MODER_MODER8_O;
// PB12..15 - board address, pullup input
GPIOB->PUPDR = GPIO_PUPDR_PUPDR12_0 | GPIO_PUPDR_PUPDR13_0 | GPIO_PUPDR_PUPDR14_0 | GPIO_PUPDR_PUPDR15_0;
// PB12..15 - board address, pullup input; PB0..2, PB10 - ESW, pullup inputs (inverse)
VIO_OFF();
SLEEP_ON();
DRV_DISABLE();
// PA. PP: PA4, PA8; AIN: PA0, PA1
GPIOA->MODER = GPIO_MODER_MODER8_O | GPIO_MODER_MODER4_O | GPIO_MODER_MODER1_AI | GPIO_MODER_MODER0_AI;
GPIOA->PUPDR = 0;
GPIOA->OTYPER = 0;
// PB. PUin: 0,1,2,10,12,13,14,15
GPIOB->MODER = 0;
GPIOB->PUPDR = GPIO_PUPDR0_PU | GPIO_PUPDR1_PU | GPIO_PUPDR2_PU | GPIO_PUPDR10_PU |
GPIO_PUPDR12_PU | GPIO_PUPDR13_PU | GPIO_PUPDR14_PU | GPIO_PUPDR15_PU;
GPIOB->OTYPER = 0;
// PC. PP: 13..15
GPIOC->MODER = GPIO_MODER_MODER13_O | GPIO_MODER_MODER14_O | GPIO_MODER_MODER15_O;
GPIOC->PUPDR = 0;
GPIOC->OTYPER = 0;
// PF. OD: 0; FLin: 1
GPIOF->MODER = GPIO_MODER_MODER0_O;
//GPIOF->PUPDR = GPIO_PUPDR1_PU;
GPIOF->PUPDR = 0;
GPIOF->OTYPER = 0;
// other pins will be set up later
/*
// Set LEDS (PC13/14) as output
GPIOC->MODER = (GPIOC->MODER & ~(GPIO_MODER_MODER13 | GPIO_MODER_MODER14)
@ -94,3 +119,8 @@ uint8_t refreshBRDaddr(){
return (brdADDR = READ_BRD_ADDR());
}
uint8_t getBRDaddr(){return brdADDR;}
void sleep(uint16_t ms){
uint32_t Tnew = Tms + ms;
while(Tnew != Tms) nop();
}

View File

@ -1,12 +1,10 @@
/*
* geany_encoding=koi8-r
* hardware.h
* This file is part of the Stepper project.
* Copyright 2020 Edward V. Emelianov <edward.emelianoff@gmail.com>.
*
* Copyright 2018 Edward V. Emelianov <eddy@sao.ru, edward.emelianoff@gmail.com>
*
* This program is free software; you can redistribute it and/or modify
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
@ -15,11 +13,9 @@
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
* MA 02110-1301, USA.
*
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#pragma once
#ifndef __HARDWARE_H__
#define __HARDWARE_H__
@ -43,12 +39,49 @@
#define RS485_TX() do{GPIOA->BSRR = GPIO_BSRR_BS_8;}while(0)
#define RS485_RX() do{GPIOA->BRR = GPIO_BRR_BR_8;}while(0)
// pins manipulation
// DIR - PA4
#define SET_DIR() do{GPIOA->BSRR = 1<<4;}while(0)
#define CLEAR_DIR() do{GPIOA->BRR = 1<<4;}while(0)
// read ~FAULT - PF1 (inverse)
#define FAULT_STATE() ((GPIOF->IDR & (1<<1)) ? 0 : 1)
// ~SLEEP - PC15 (inverse)
#define SLEEP_ON() do{GPIOC->BRR = 1<<15;}while(0)
#define SLEEP_OFF() do{GPIOC->BSRR = 1<<15;}while(0)
// configure ~SLP as PP output
#define SLP_CFG_OUT() do{GPIOC->MODER = (GPIOC->MODER&~GPIO_MODER_MODER15) | GPIO_MODER_MODER15_O; }while(0)
// and ~SLP as floating input
#define SLP_CFG_IN() do{GPIOC->MODER = (GPIOC->MODER&~GPIO_MODER_MODER15);}while(0)
// SLP state when input (non-inverted)
#define SLP_STATE() ((GPIOC->IDR & (1<<15)) ? 1 : 0)
// ~EN, CFG6 - PC13 (inverse)
#define DRV_ENABLE() do{GPIOC->BRR = 1<<13;}while(0)
#define DRV_DISABLE() do{GPIOC->BSRR = 1<<13;}while(0)
// configure ~EN as PP output
#define EN_CFG_OUT() do{GPIOC->MODER = (GPIOC->MODER&~GPIO_MODER_MODER13) | GPIO_MODER_MODER13_O; }while(0)
// configure ~EN as floating input
#define EN_CFG_IN() do{GPIOC->MODER = (GPIOC->MODER&~GPIO_MODER_MODER13);}while(0)
// EN state when it's an input (non-inverted)
#define EN_STATE() ((GPIOC->IDR & (1<<13)) ? 1 : 0)
// ~CS, CFG3, microstepping2 - PC14
#define SET_UST2() do{GPIOC->BSRR = 1<<14;}while(0)
#define RESET_UST2() do{GPIOC->BRR = 1<<14;}while(0)
#define CS_ACTIVE() do{GPIOC->BRR = 1<<14;}while(0)
#define CS_PASSIVE() do{GPIOC->BSRR = 1<<14;}while(0)
// configure ~CS as PP output
//#define CS_CFG_OUT() do{GPIOC->MODER = (GPIOC->MODER&~GPIO_MODER_MODER14) | GPIO_MODER_MODER14_O; }while(0)
// ~CS as floating input
;
// Vio_ON, PF0 (inverse)
#define VIO_ON() do{GPIOF->BRR = 1;}while(0)
#define VIO_OFF() do{GPIOF->BSRR = 1;}while(0)
extern volatile uint32_t Tms;
void Jump2Boot();
void gpio_setup(void);
void gpio_setup();
void iwdg_setup();
uint8_t getBRDaddr();
uint8_t refreshBRDaddr();
void sleep(uint16_t ms);
#endif // __HARDWARE_H__

View File

@ -19,6 +19,9 @@
* MA 02110-1301, USA.
*/
#include "adc.h"
#include "can.h"
#include "can_process.h"
#include "flash.h"
#include "hardware.h"
#include "proto.h"
#include "usart.h"
@ -44,14 +47,48 @@ void clstate_handler(uint16_t val){
usart_putchar('\n');
}*/
#define USBBUF 63
// usb getline
static char *get_USB(){
static char tmpbuf[USBBUF+1], *curptr = tmpbuf;
static int rest = USBBUF;
uint8_t x = USB_receive((uint8_t*)curptr);
if(!x) return NULL;
curptr[x] = 0;
if(x == 1 && *curptr == 0x7f){ // backspace
if(curptr > tmpbuf){
--curptr;
USND("\b \b");
}
return NULL;
}
USB_sendstr(curptr); // echo
if(curptr[x-1] == '\n'){
curptr = tmpbuf;
rest = USBBUF;
// omit empty lines
if(tmpbuf[0] == '\n') return NULL;
// and wrong empty lines
if(tmpbuf[0] == '\r' && tmpbuf[1] == '\n') return NULL;
return tmpbuf;
}
curptr += x; rest -= x;
if(rest <= 0){ // buffer overflow
curptr = tmpbuf;
rest = USBBUF;
}
return NULL;
}
int main(void){
uint32_t lastT = 0;
char tmpbuf[129];
sysreset();
SysTick_Config(6000, 1);
gpio_setup();
gpio_setup(); // + read board address
usart_setup();
adc_setup();
flashstorage_init();
/*
if(RCC->CSR & RCC_CSR_IWDGRSTF){ // watchdog reset occured
usart_send_blocking("WDGRESET=1\n", 11);
}
@ -59,35 +96,30 @@ int main(void){
usart_send_blocking("SOFTRESET=1\n", 12);
}
RCC->CSR |= RCC_CSR_RMVF; // remove reset flags
*/
CAN_setup(the_conf.CANspeed);
USB_setup();
//iwdg_setup();
iwdg_setup();
while (1){
IWDG->KR = IWDG_REFRESH; // refresh watchdog
if(lastT > Tms || Tms - lastT > 499){
if(Tms - lastT > 499){
lastT = Tms;
}
can_proc();
usb_proc();
usart_proc(); // switch RS-485 to Rx after last byte sent
uint8_t r = 0;
if((r = USB_receive(tmpbuf, 128))){
tmpbuf[r] = 0;
cmd_parser(tmpbuf, TARGET_USB);
char *txt;
if((txt = get_USB())){
cmd_parser(txt, TARGET_USB);
}
IWDG->KR = IWDG_REFRESH;
if(usartrx()){ // usart1 received data, store in in buffer
char *txt = NULL;
r = usart_getline(&txt);
/*
buftgt(TARGET_USB);
addtobuf("got ");
printu(r);
addtobuf(" bytes over USART:\n");
addtobuf(txt);
addtobuf("\n====\n");
sendbuf();
*/
usart_getline(&txt);
cmd_parser(txt, TARGET_USART);
}
IWDG->KR = IWDG_REFRESH;
can_messages_proc();
}
return 0;
}

View File

@ -21,20 +21,31 @@
*
*/
#include "adc.h"
#include "can.h"
#include "flash.h"
#include "hardware.h"
#include "proto.h"
#include "steppers.h"
#include "usart.h"
#include "usb.h"
#include <string.h> // strlen, strcpy(
extern volatile uint8_t canerror;
uint8_t monitCAN = 0; // ==1 to show CAN messages
#define BUFSZ UARTBUFSZ
static char buff[BUFSZ+1], *bptr = buff;
static uint8_t blen = 0, // length of data in `buff`
USBcmd = 0; // ==1 if buffer prepared for USB
char *omit_spaces(char *buf){
while(*buf){
if(*buf > ' ') break;
++buf;
}
return buf;
}
void buftgt(uint8_t isUSB){
USBcmd = isUSB;
}
@ -44,7 +55,7 @@ void sendbuf(){
if(blen == 0) return;
if(USBcmd){
*bptr = 0;
USB_send(buff);
USB_sendstr(buff);
}else while(LINE_BUSY == usart_send(buff, blen)){IWDG->KR = IWDG_REFRESH;}
bptr = buff;
blen = 0;
@ -55,7 +66,7 @@ void addtobuf(const char *txt){
int l = strlen(txt);
if(l > BUFSZ){
sendbuf();
if(USBcmd) USB_send(txt);
if(USBcmd) USB_sendstr(txt);
else usart_send_blocking(txt, l);
}else{
if(blen+l > BUFSZ){
@ -105,19 +116,161 @@ static inline void showUIvals(){
newline();
}
// check address & return 0 if wrong or address to roll to next non-digit
static int chk485addr(const char *txt){
int32_t N;
int p = getnum(txt, &N);
if(!p){
USB_send("Not num\n");
return 0;
}
// check address & return 0 if wrong or roll to next non-digit
static char *chk485addr(char *txt){
uint32_t N;
char *nxt = getnum(txt, &N);
if(nxt == txt) return NULL;
if(N == getBRDaddr()){
return p;
return nxt;
}
return NULL;
}
// parse `txt` to CAN_message
static CAN_message *parseCANmsg(char *txt){
static CAN_message canmsg;
uint32_t N;
char *n;
int ctr = -1;
canmsg.ID = 0xffff;
do{
txt = omit_spaces(txt);
n = getnum(txt, &N);
if(txt == n) break;
txt = n;
if(ctr == -1){
if(N > 0x7ff){
SEND("ID should be 11-bit number!\n");
return NULL;
}
canmsg.ID = (uint16_t)(N&0x7ff);
ctr = 0;
continue;
}
if(ctr > 7){
SEND("ONLY 8 data bytes allowed!\n");
return NULL;
}
if(N > 0xff){
SEND("Every data portion is a byte!\n");
return NULL;
}
canmsg.data[ctr++] = (uint8_t)(N&0xff);
}while(1);
if(canmsg.ID == 0xffff){
SEND("NO ID given, send nothing!\n");
return NULL;
}
canmsg.length = (uint8_t) ctr;
return &canmsg;
}
// send command, format: ID (hex/bin/dec) data bytes (up to 8 bytes, space-delimeted)
TRUE_INLINE void sendCANcommand(char *txt){
CAN_message *msg = parseCANmsg(txt);
if(!msg) return;
uint32_t N = 1000000;
while(CAN_BUSY == can_send(msg->data, msg->length, msg->ID)){
if(--N == 0) break;
}
}
static uint8_t userconf_changed = 0; // ==1 if user_conf was changed
TRUE_INLINE void userconf_manip(char *txt){
txt = omit_spaces(txt);
switch(*txt){
case 'd': // dump
dump_userconf();
break;
case 's': // store
if(userconf_changed){
if(!store_userconf()){
userconf_changed = 0;
SEND("Stored!");
}else SEND("Error when storing!");
}
break;
default:
SEND("Wrong argument of userconf manipulation: ");
SEND(txt);
}
}
// a set of setters for user_conf
TRUE_INLINE void setters(char *txt){
uint32_t U;
txt = omit_spaces(txt);
if(!*txt){
SEND("Setters need more arguments");
return;
}
char *nxt = getnum(txt + 1, &U);
switch(*txt){
case 'c': // set CAN speed
if(nxt == txt + 1){
SEND("No CAN speed given");
return;
}
if(U < 50){
SEND("Speed should be not less than 50kbps");
return;
}
if(U > 3000){
SEND("Speed should be not greater than 3000kbps");
return;
}
if(the_conf.CANspeed != (uint16_t)U){
the_conf.CANspeed = (uint16_t)U;
userconf_changed = 1;
}
break;
default:
SEND("Wrong argument of setters: ");
SEND(txt);
}
}
TRUE_INLINE void driver_commands(char *txt){
uint32_t U;
char *nxt;
const char *drvshould = "Driver type should be one of: 2130, 4988, 8825";
txt = omit_spaces(txt);
if(!*txt){
SEND("Driver commands need more arguments");
return;
}
switch(*txt){
case 'i': // init
initDriver();
break;
case 's': // set type
nxt = getnum(txt + 1, &U);
if(nxt == txt+1){
SEND(drvshould);
break;
}
switch(U){
case 2130:
the_conf.driver_type = DRV_2130;
SEND("TMC2130");
break;
case 4988:
the_conf.driver_type = DRV_4988;
SEND("A4988");
break;
case 8825:
the_conf.driver_type = DRV_8825;
SEND("DRV8825");
break;
default:
SEND(drvshould);
}
break;
default:
SEND("Wrong argument of driver commands: ");
SEND(txt);
}
USB_send("Not me\n");
return 0;
}
/**
@ -125,36 +278,60 @@ static int chk485addr(const char *txt){
* @param txt - buffer with commands & data
* @param isUSB - == 1 if data got from USB
*/
void cmd_parser(const char *txt, uint8_t isUSB){
void cmd_parser(char *txt, uint8_t isUSB){
sendbuf();
USBcmd = isUSB;
int p = 0;
// we can't simple use &txt[p] as variable: it can be non-aligned by 4!!!
if(isUSB == TARGET_USART){ // check address and roll message to nearest non-space
p = chk485addr(txt);
if(!p) return;
txt = chk485addr(txt);
if(!txt) return;
}
// roll to non-space
char c;
while((c = txt[p])){
if(c == ' ' || c == '\t') ++p;
else break;
txt = omit_spaces(txt);
// long commands, commands with arguments
switch(*txt){
case 'D':
driver_commands(txt + 1);
goto eof;
break;
case 's':
sendCANcommand(txt + 1);
goto eof;
break;
case 'S': // setters
setters(txt + 1);
goto eof;
break;
case 'U':
userconf_manip(txt + 1);
goto eof;
break;
}
//int16_t L = strlen(txt);
char _1st = txt[p];
switch(_1st){
if(txt[1] != '\n') *txt = '?'; // help for wrong message length
switch(*txt){
case '0':
can_accept_one();
SEND("Accept only my ID @CAN");
break;
case '@':
can_accept_any();
SEND("Accept any ID @CAN");
break;
case 'a':
showADCvals();
break;
case 'D':
case 'b':
SEND("Jump to bootloader.\n");
sendbuf();
Jump2Boot();
break;
case 'd':
dump_userconf();
break;
case 'g':
SEND("Board address: ");
printuhex(refreshBRDaddr());
newline();
SEND("\nCAN IN address (OUT=IN+1): ");
printuhex(getCANID());
break;
case 'j':
printmcut();
@ -162,22 +339,47 @@ void cmd_parser(const char *txt, uint8_t isUSB){
case 'k':
showUIvals();
break;
case 'm':
monitCAN = !monitCAN;
SEND("CAN monitoring ");
if(monitCAN) SEND("ON");
else SEND("OFF");
break;
case 't':
if(ALL_OK != usart_send("TEST test\n", 10))
addtobuf("Can't send data over RS485\n");
else addtobuf("Sent\n");
SEND("Can't send data over RS485");
else SEND("Sent");
break;
case 'T':
SEND("Tms="); printu(Tms);
break;
case 'z':
flashstorage_init();
break;
default: // help
SEND(
"0 - accept only data for this device\n"
"@ - accept any IDs\n"
"a - get raw ADC values\n"
"D - switch to bootloader\n"
"b - switch to bootloader\n"
"d - dump userconf\n"
"Di - init stepper driver (8825, 4988, 2130)\n"
"Ds - set driver type\n"
"g - get board address\n"
"j - get MCU temperature\n"
"k - get U values\n"
"m - start/stop monitoring CAN bus\n"
"s - send data over CAN: s ID [byte0..7]\n"
"t - send test sequence over RS-485\n"
"T - print current time\n"
"Sc - set default CAN speed\n"
"Ud - userconf dump\n"
"Us - userconf store\n"
);
break;
}
eof:
newline();
sendbuf();
}
@ -200,7 +402,7 @@ void printu(uint32_t val){
void printuhex(uint32_t val){
addtobuf("0x");
uint8_t *ptr = (uint8_t*)&val + 3;
int i, j;
int8_t i, j;
for(i = 0; i < 4; ++i, --ptr){
for(j = 1; j > -1; --j){
uint8_t half = (*ptr >> (4*j)) & 0x0f;
@ -210,52 +412,73 @@ void printuhex(uint32_t val){
}
}
/**
* @brief getnum - read number from string omiting leading spaces
* @param buf (i) - string to process
* @param N (o) - number read (or NULL for test)
* @return amount of symbols processed (or 0 if none)
*/
int getnum(const char *buf, int32_t *N){
char c;
int positive = -1, srd = 0;
int32_t val = 0;
while((c = *buf++)){
if(c == '\t' || c == ' '){
if(positive < 0){
++srd;
continue; // beginning spaces
}
else break; // spaces after number
// THERE'S NO OVERFLOW PROTECTION IN NUMBER READ PROCEDURES!
// read decimal number
static char *getdec(char *buf, uint32_t *N){
uint32_t num = 0;
while(*buf){
char c = *buf;
if(c < '0' || c > '9'){
break;
}
if(c == '-'){
if(positive < 0){
++srd;
positive = 0;
continue;
}else break; // there already was `-` or number
}
if(c < '0' || c > '9') break;
++srd;
if(positive < 0) positive = 1;
val = val * 10 + (int32_t)(c - '0');
num *= 10;
num += c - '0';
++buf;
}
if(positive != -1){
if(positive == 0){
if(val == 0) return 0; // single '-' or -0000
val = -val;
}
if(N) *N = val;
}else return 0;
uint8_t uold = USBcmd;
USBcmd = TARGET_USB;
addtobuf("Got num: ");
if(val < 0){bufputchar('-'); val = -val;}
printu(val);
addtobuf(", N=");
printu(srd);
newline();
sendbuf();
USBcmd = uold;
return srd;
*N = num;
return buf;
}
// read hexadecimal number (without 0x prefix!)
static char *gethex(char *buf, uint32_t *N){
uint32_t num = 0;
while(*buf){
char c = *buf;
uint8_t M = 0;
if(c >= '0' && c <= '9'){
M = '0';
}else if(c >= 'A' && c <= 'F'){
M = 'A' - 10;
}else if(c >= 'a' && c <= 'f'){
M = 'a' - 10;
}
if(M){
num <<= 4;
num += c - M;
}else{
break;
}
++buf;
}
*N = num;
return buf;
}
// read binary number (without 0b prefix!)
static char *getbin(char *buf, uint32_t *N){
uint32_t num = 0;
while(*buf){
char c = *buf;
if(c < '0' || c > '1'){
break;
}
num <<= 1;
if(c == '1') num |= 1;
++buf;
}
*N = num;
return buf;
}
/**
* @brief getnum - read uint32_t from string (dec, hex or bin: 127, 0x7f, 0b1111111)
* @param buf - buffer with number and so on
* @param N - the number read
* @return pointer to first non-number symbol in buf (if it is == buf, there's no number)
*/
char *getnum(char *txt, uint32_t *N){
txt = omit_spaces(txt);
if(*txt == '0'){
if(txt[1] == 'x' || txt[1] == 'X') return gethex(txt+2, N);
if(txt[1] == 'b' || txt[1] == 'B') return getbin(txt+2, N);
}
return getdec(txt, N);
}

View File

@ -37,13 +37,17 @@
#define newline() do{bufputchar('\n');}while(0)
void cmd_parser(const char *buf, uint8_t isUSB);
extern uint8_t monitCAN;
char *omit_spaces(char *buf);
void cmd_parser(char *buf, uint8_t isUSB);
void addtobuf(const char *txt);
void bufputchar(char ch);
void sendbuf();
void printu(uint32_t val);
void printuhex(uint32_t val);
int getnum(const char *buf, int32_t *N);
char *getnum(char *txt, uint32_t *N);
#define TARGET_USB 1
#define TARGET_USART 0

View File

@ -0,0 +1,104 @@
/*
* This file is part of the Stepper project.
* Copyright 2020 Edward V. Emelianov <edward.emelianoff@gmail.com>.
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "flash.h"
#include "hardware.h"
#include "proto.h"
#include "steppers.h"
static drv_type driver = DRV_NONE;
/**
* @brief checkDrv - test if driver connected
*/
static void checkDrv(){
uint8_t oldstate;
// turn power on and wait a little
SLEEP_ON(); // sleep -> 0
DRV_DISABLE();
VIO_ON(); sleep(15);
// check Vdd
if(FAULT_STATE()){
MSG("No power @ Vin, mailfunction\n");
driver = DRV_MAILF;
VIO_OFF();
goto ret;
}
SLP_CFG_IN();
sleep(2);
// Check is ~SLEEP is in air
oldstate = SLP_STATE();
if(oldstate) MSG("SLP=1\n"); else MSG("SLP=0\n");
SLEEP_OFF(); SLP_CFG_OUT(); // sleep -> 1
sleep(2);
SLP_CFG_IN();
sleep(2);
if(SLP_STATE()) MSG("SLP=1\n"); else MSG("SLP=0\n");
if(SLP_STATE() != oldstate){
MSG("~SLP is in air\n");
if(driver != DRV_2130){
driver = DRV_NONE;
VIO_OFF();
}
goto ret;
}
SLEEP_ON(); SLP_CFG_OUT();
// check if ~EN is in air
DRV_ENABLE(); // EN->0
sleep(2);
EN_CFG_IN();
sleep(2);
oldstate = EN_STATE();
if(oldstate) MSG("EN=1\n"); else MSG("EN=0\n");
DRV_DISABLE(); // EN->1
EN_CFG_OUT();
sleep(2);
EN_CFG_IN();
sleep(2);
if(EN_STATE()) MSG("EN=1\n"); else MSG("EN=0\n");
if(oldstate != EN_STATE()){
MSG("~EN is in air\n");
driver = DRV_NONE;
VIO_OFF();
goto ret;
}
ret:
DRV_DISABLE();
EN_CFG_OUT(); // return OUT conf
SLEEP_OFF();
SLP_CFG_OUT();
#ifdef EBUG
sendbuf();
#endif
}
/**
* @brief initDriver - try to init driver
* @return driver type
*/
drv_type initDriver(){
if(driver != DRV_NOTINIT){ // reset all settings
MSG("clear GPIO & other setup\n");
// TODO: turn off SPI & timer
gpio_setup(); // reset pins control
}
driver = the_conf.driver_type;
checkDrv();
if(driver == DRV_NONE) return driver;
// TODO: some stuff here
return driver;
}

View File

@ -0,0 +1,36 @@
/*
* This file is part of the Stepper project.
* Copyright 2020 Edward V. Emelianov <edward.emelianoff@gmail.com>.
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#pragma once
#ifndef STEPPERS_H__
#define STEPPERS_H__
#include <stm32f0.h>
typedef enum{
DRV_NONE, // driver is absent
DRV_NOTINIT,// not initialized
DRV_MAILF, // mailfunction - no Vdd when Vio_ON activated
DRV_8825, // DRV8825 connected
DRV_4988, // A4988 connected
DRV_2130 // TMC2130 connected
} drv_type;
drv_type initDriver();
drv_type getDrvType();
#endif // STEPPERS_H__

View File

@ -23,53 +23,33 @@
#include "usb.h"
#include "usb_lib.h"
#include <string.h> // memcpy, memmove
#include "usart.h"
// incoming buffer size
#define IDATASZ (256)
static uint8_t incoming_data[IDATASZ];
static uint8_t ovfl = 0;
static uint16_t idatalen = 0;
static int8_t usbON = 0; // ==1 when USB fully configured
static volatile uint8_t tx_succesfull = 0;
static volatile uint8_t tx_succesfull = 1;
static volatile uint8_t rxNE = 0;
// interrupt IN handler (never used?)
static uint16_t EP1_Handler(ep_t ep){
uint8_t ep0buf[11];
if (ep.rx_flag){
EP_Read(1, ep0buf);
ep.status = SET_VALID_TX(ep.status);
ep.status = KEEP_STAT_RX(ep.status);
}else if (ep.tx_flag){
ep.status = SET_VALID_RX(ep.status);
ep.status = SET_STALL_TX(ep.status);
}
return ep.status;
static void EP1_Handler(){
uint16_t epstatus = KEEP_DTOG(USB->EPnR[1]);
if(RX_FLAG(epstatus)) epstatus = (epstatus & ~USB_EPnR_STAT_TX) ^ USB_EPnR_STAT_RX; // set valid RX
else epstatus = epstatus & ~(USB_EPnR_STAT_TX|USB_EPnR_STAT_RX);
// clear CTR
epstatus = (epstatus & ~(USB_EPnR_CTR_RX|USB_EPnR_CTR_TX));
USB->EPnR[1] = epstatus;
}
// data IN/OUT handler
static uint16_t EP23_Handler(ep_t ep){
if(ep.rx_flag){
int rd = ep.rx_cnt, rest = IDATASZ - idatalen;
if(rd){
if(rd <= rest){
idatalen += EP_Read(2, &incoming_data[idatalen]);
ovfl = 0;
}else{
ep.status = SET_NAK_RX(ep.status);
ovfl = 1;
return ep.status;
}
}
ep.status = CLEAR_DTOG_RX(ep.status);
ep.status = CLEAR_DTOG_TX(ep.status);
ep.status = SET_STALL_TX(ep.status);
}else if (ep.tx_flag){
ep.status = KEEP_STAT_TX(ep.status);
tx_succesfull = 1;
}
ep.status = SET_VALID_RX(ep.status);
return ep.status;
// data IN/OUT handlers
static void transmit_Handler(){ // EP3IN
tx_succesfull = 1;
uint16_t epstatus = KEEP_DTOG_STAT(USB->EPnR[3]);
// clear CTR keep DTOGs & STATs
USB->EPnR[3] = (epstatus & ~(USB_EPnR_CTR_TX)); // clear TX ctr
}
static void receive_Handler(){ // EP2OUT
rxNE = 1;
uint16_t epstatus = KEEP_DTOG_STAT(USB->EPnR[2]);
USB->EPnR[2] = (epstatus & ~(USB_EPnR_CTR_RX)); // clear RX ctr
}
void USB_setup(){
@ -77,7 +57,7 @@ void USB_setup(){
RCC->CFGR3 &= ~RCC_CFGR3_USBSW; // reset USB
RCC->CR2 |= RCC_CR2_HSI48ON; // turn ON HSI48
uint32_t tmout = 16000000;
while(!(RCC->CR2 & RCC_CR2_HSI48RDY)){if(--tmout == 0) break; IWDG->KR = IWDG_REFRESH;}
while(!(RCC->CR2 & RCC_CR2_HSI48RDY)){if(--tmout == 0) break;}
FLASH->ACR = FLASH_ACR_PRFTBE | FLASH_ACR_LATENCY;
CRS->CFGR &= ~CRS_CFGR_SYNCSRC;
CRS->CFGR |= CRS_CFGR_SYNCSRC_1; // USB SOF selected as sync source
@ -85,7 +65,7 @@ void USB_setup(){
CRS->CR |= CRS_CR_CEN; // enable freq counter & block CRS->CFGR as read-only
RCC->CFGR |= RCC_CFGR_SW;
// allow RESET and CTRM interrupts
USB->CNTR = USB_CNTR_RESETM | USB_CNTR_CTRM;
USB->CNTR = USB_CNTR_RESETM | USB_CNTR_WKUPM;
// clear flags
USB->ISTR = 0;
// and activate pullup
@ -93,89 +73,109 @@ void USB_setup(){
NVIC_EnableIRQ(USB_IRQn);
}
void usb_proc(){
if(USB_GetState() == USB_CONFIGURE_STATE){ // USB configured - activate other endpoints
if(!usbON){ // endpoints not activated
// make new BULK endpoint
// Buffer have 1024 bytes, but last 256 we use for CAN bus (30.2 of RM: USB main features)
EP_Init(1, EP_TYPE_INTERRUPT, 10, 0, EP1_Handler); // IN1 - transmit
EP_Init(2, EP_TYPE_BULK, 0, USB_RXBUFSZ, EP23_Handler); // OUT2 - receive data
EP_Init(3, EP_TYPE_BULK, USB_TXBUFSZ, 0, EP23_Handler); // IN3 - transmit data
usbON = 1;
}
}else{
usbON = 0;
static int usbwr(const uint8_t *buf, uint16_t l){
uint32_t ctra = 1000000;
while(--ctra && tx_succesfull == 0){
IWDG->KR = IWDG_REFRESH;
}
tx_succesfull = 0;
EP_Write(3, buf, l);
ctra = 1000000;
while(--ctra && tx_succesfull == 0){
IWDG->KR = IWDG_REFRESH;
}
if(tx_succesfull == 0){usbON = 0; return 1;} // usb is OFF?
return 0;
}
static uint8_t usbbuff[USB_TXBUFSZ-1]; // temporary buffer (63 - to prevent need of ZLP)
static uint8_t buflen = 0; // amount of symbols in usbbuff
// send next up to 63 bytes of data in usbbuff
static void send_next(){
if(!buflen || !tx_succesfull) return;
tx_succesfull = 0;
EP_Write(3, usbbuff, buflen);
buflen = 0;
}
// unblocking sending - just fill a buffer
void USB_send(const uint8_t *buf, uint16_t len){
if(!usbON || !len) return;
if(len > USB_TXBUFSZ-1 - buflen){
usbwr(usbbuff, buflen);
buflen = 0;
}
if(len > USB_TXBUFSZ-1){
USB_send_blk(buf, len);
return;
}
while(len--) usbbuff[buflen++] = *buf++;
}
// send zero-terminated string
void USB_sendstr(const char *str){
uint16_t l = 0;
const char *ptr = str;
while(*ptr++ && l < 512) ++l;
USB_send((uint8_t*)str, l);
}
// blocking sending
void USB_send_blk(const uint8_t *buf, uint16_t len){
if(!usbON || !len) return; // USB disconnected
if(buflen){
usbwr(usbbuff, buflen);
buflen = 0;
}
int needzlp = 0;
while(len){
if(len == USB_TXBUFSZ) needzlp = 1;
uint16_t s = (len > USB_TXBUFSZ) ? USB_TXBUFSZ : len;
if(usbwr(buf, s)) return;
len -= s;
buf += s;
}
if(needzlp){
usbwr(NULL, 0);
}
}
void USB_send(const char *buf){
uint16_t l = 0, ctr = 0;
const char *p = buf;
while(*p++) ++l;
while(l){
IWDG->KR = IWDG_REFRESH;
uint16_t s = (l > USB_TXBUFSZ) ? USB_TXBUFSZ : l;
tx_succesfull = 0;
EP_Write(3, (uint8_t*)&buf[ctr], s);
uint32_t ctra = 1000000;
while(--ctra && tx_succesfull == 0){IWDG->KR = IWDG_REFRESH;}
l -= s;
ctr += s;
void usb_proc(){
switch(USB_Dev.USB_Status){
case USB_STATE_CONFIGURED:
// make new BULK endpoint
// Buffer have 1024 bytes, but last 256 we use for CAN bus (30.2 of RM: USB main features)
EP_Init(1, EP_TYPE_INTERRUPT, USB_EP1BUFSZ, 0, EP1_Handler); // IN1 - transmit
EP_Init(2, EP_TYPE_BULK, 0, USB_RXBUFSZ, receive_Handler); // OUT2 - receive data
EP_Init(3, EP_TYPE_BULK, USB_TXBUFSZ, 0, transmit_Handler); // IN3 - transmit data
USB_Dev.USB_Status = USB_STATE_CONNECTED;
break;
case USB_STATE_DEFAULT:
case USB_STATE_ADDRESSED:
if(usbON){
usbON = 0;
}
break;
default: // USB_STATE_CONNECTED - send next data portion
if(!usbON) return;
send_next();
}
}
/**
* @brief USB_receive - read first received text string
* @param buf (i) - buffer for received data
* @param bufsize - its size
* @brief USB_receive
* @param buf (i) - buffer[64] for received data
* @return amount of received bytes
*/
int USB_receive(char *buf, int bufsize){
if(bufsize<1 || !idatalen) return 0;
IWDG->KR = IWDG_REFRESH;
int stlen = 0, i;
for(i = 0; i < idatalen; ++i){
if(incoming_data[i] == '\n'){
stlen = i+1;
break;
}
}
if(i == idatalen || stlen == 0) return 0;
/*
char x[] = "USB got x:\n";
x[8] = '0' + stlen;
usart_send_blck(x);
usart_send_blck((char*)incoming_data);
usart_send_blck("\n");
*/
USB->CNTR = 0;
int sz = (stlen > bufsize) ? bufsize : stlen, rest = idatalen - sz;
memcpy(buf, incoming_data, sz);
buf[sz] = 0;
/*
usart_send_blck("buf:\n");
usart_send_blck((char*)buf);
usart_send_blck("\n");
*/
if(rest > 0){
memmove(incoming_data, &incoming_data[sz], rest);
idatalen = rest;
}else idatalen = 0;
if(ovfl){
EP23_Handler(endpoints[2]);
uint16_t epstatus = USB->EPnR[2];
epstatus = CLEAR_DTOG_RX(epstatus);
epstatus = SET_VALID_RX(epstatus);
USB->EPnR[2] = epstatus;
}
USB->CNTR = USB_CNTR_RESETM | USB_CNTR_CTRM;
uint8_t USB_receive(uint8_t *buf){
if(!usbON || !rxNE) return 0;
uint8_t sz = EP_Read(2, buf);
uint16_t epstatus = KEEP_DTOG(USB->EPnR[2]);
// keep stat_tx & set ACK rx
USB->EPnR[2] = (epstatus & ~(USB_EPnR_STAT_TX)) ^ USB_EPnR_STAT_RX;
rxNE = 0;
return sz;
}
/**
* @brief USB_configured
* @return 1 if USB is in configured state
*/
int USB_configured(){
return usbON;
}

View File

@ -28,10 +28,14 @@
#define BUFFSIZE (64)
// send string with constant length
#define USND(str) do{USB_send((uint8_t*)str, sizeof(str)-1);}while(0)
void USB_setup();
void usb_proc();
void USB_send(const char *buf);
int USB_receive(char *buf, int bufsize);
int USB_configured();
void USB_send(const uint8_t *buf, uint16_t len);
void USB_sendstr(const char *str);
void USB_send_blk(const uint8_t *buf, uint16_t len);
uint8_t USB_receive(uint8_t *buf);
#endif // __USB_H__

View File

@ -27,22 +27,27 @@
#include <stm32f0.h>
// max endpoints number
#define STM32ENDPOINTS 8
/**
* Buffers size definition
**/
// !!! when working with CAN bus change USB_BTABLE_SIZE to 768 !!!
#define USB_BTABLE_SIZE 1024
// first 64 bytes of USB_BTABLE are registers!
#define USB_EP0_BASEADDR 64
#define USB_BTABLE_SIZE 768
// for USB FS EP0 buffers are from 8 to 64 bytes long (64 for PL2303)
#define USB_EP0_BUFSZ 64
// USB transmit buffer size (64 for PL2303)
#define USB_TXBUFSZ 64
// USB receive buffer size (64 for PL2303)
#define USB_RXBUFSZ 64
// EP1 - interrupt - buffer size
#define USB_EP1BUFSZ 8
#define USB_BTABLE_BASE 0x40006000
#ifdef USB_BTABLE
#undef USB_BTABLE
#endif
#define USB_BTABLE ((USB_BtableDef *)(USB_BTABLE_BASE))
#define USB_ISTR_EPID 0x0000000F
#define USB_FNR_LSOF_0 0x00000800
@ -74,15 +79,8 @@
#define USB_TypeDef USB_TypeDef_custom
typedef struct{
__IO uint32_t EPnR[8];
__IO uint32_t RESERVED1;
__IO uint32_t RESERVED2;
__IO uint32_t RESERVED3;
__IO uint32_t RESERVED4;
__IO uint32_t RESERVED5;
__IO uint32_t RESERVED6;
__IO uint32_t RESERVED7;
__IO uint32_t RESERVED8;
__IO uint32_t EPnR[STM32ENDPOINTS];
__IO uint32_t RESERVED[STM32ENDPOINTS];
__IO uint32_t CNTR;
__IO uint32_t ISTR;
__IO uint32_t FNR;
@ -100,7 +98,7 @@ typedef struct{
} USB_EPDATA_TypeDef;
typedef struct{
__IO USB_EPDATA_TypeDef EP[8];
__IO USB_EPDATA_TypeDef EP[STM32ENDPOINTS];
} USB_BtableDef;
#endif // __USB_DEFS_H__

View File

@ -20,17 +20,14 @@
* MA 02110-1301, USA.
*
*/
#include "usb_lib.h"
#include <stdint.h>
#include <string.h> // memcpy
#include "usb_lib.h"
#ifdef EBUG
#undef EBUG
#endif
ep_t endpoints[STM32ENDPOINTS];
ep_t endpoints[ENDPOINTS_NUM];
static usb_dev_t USB_Dev;
usb_dev_t USB_Dev;
uint8_t usbON = 0;
static usb_LineCoding lineCoding = {115200, 0, 0, 8};
static config_pack_t setup_packet;
static uint8_t ep0databuf[EP0DATABUF_SIZE];
@ -157,7 +154,6 @@ void WEAK break_handler(){
// handler of vendor requests
void WEAK vendor_handler(config_pack_t *packet){
if(packet->bmRequestType & 0x80){ // read
//SEND("Read");
uint8_t c;
switch(packet->wValue){
case 0x8484:
@ -179,8 +175,31 @@ void WEAK vendor_handler(config_pack_t *packet){
}
static void wr0(const uint8_t *buf, uint16_t size){
if(setup_packet.wLength < size) size = setup_packet.wLength;
EP_WriteIRQ(0, buf, size);
if(setup_packet.wLength < size) size = setup_packet.wLength; // shortened request
if(size < endpoints[0].txbufsz){
EP_WriteIRQ(0, buf, size);
return;
}
while(size){
uint16_t l = size;
if(l > endpoints[0].txbufsz) l = endpoints[0].txbufsz;
EP_WriteIRQ(0, buf, l);
buf += l;
size -= l;
uint8_t needzlp = (l == endpoints[0].txbufsz) ? 1 : 0;
if(size || needzlp){ // send last data buffer
uint16_t status = KEEP_DTOG(USB->EPnR[0]);
// keep DTOGs, clear CTR_RX,TX, set TX VALID, leave stat_Rx
USB->EPnR[0] = (status & ~(USB_EPnR_CTR_RX|USB_EPnR_CTR_TX|USB_EPnR_STAT_RX))
^ USB_EPnR_STAT_TX;
uint32_t ctr = 1000000;
while(--ctr && (USB->ISTR & USB_ISTR_CTR) == 0){IWDG->KR = IWDG_REFRESH;};
if((USB->ISTR & USB_ISTR_CTR) == 0){
return;
}
if(needzlp) EP_WriteIRQ(0, (uint8_t*)0, 0);
}
}
}
static inline void get_descriptor(){
@ -207,7 +226,6 @@ static inline void get_descriptor(){
wr0(USB_DeviceQualifierDescriptor, USB_DeviceQualifierDescriptor[0]);
break;
default:
;
break;
}
}
@ -223,10 +241,9 @@ static inline void std_d2h_req(){
EP_WriteIRQ(0, (uint8_t *)&status, 2); // send status: Bus Powered
break;
case GET_CONFIGURATION:
EP_WriteIRQ(0, &configuration, 1);
EP_WriteIRQ(0, &configuration, 1);
break;
default:
;
break;
}
}
@ -239,11 +256,10 @@ static inline void std_h2d_req(){
break;
case SET_CONFIGURATION:
// Now device configured
USB_Dev.USB_Status = USB_CONFIGURE_STATE;
USB_Dev.USB_Status = USB_STATE_CONFIGURED;
configuration = setup_packet.wValue;
break;
default:
;
break;
}
}
@ -256,14 +272,13 @@ bmRequestType: 76543210
*/
/**
* Endpoint0 (control) handler
* @param ep - endpoint state
* @return data written to EP0R
*/
static uint16_t EP0_Handler(ep_t ep){
uint16_t epstatus = ep.status; // EP0R on input -> return this value after modifications
static void EP0_Handler(){
uint16_t epstatus = USB->EPnR[0]; // EP0R on input -> return this value after modifications
uint8_t reqtype = setup_packet.bmRequestType & 0x7f;
uint8_t dev2host = (setup_packet.bmRequestType & 0x80) ? 1 : 0;
if ((ep.rx_flag) && (ep.setup_flag)){
int rxflag = RX_FLAG(epstatus);
if(rxflag && SETUP_FLAG(epstatus)){
switch(reqtype){
case STANDARD_DEVICE_REQUEST_TYPE: // standard device request
if(dev2host){
@ -272,20 +287,14 @@ static uint16_t EP0_Handler(ep_t ep){
std_h2d_req();
EP_WriteIRQ(0, (uint8_t *)0, 0);
}
epstatus = SET_NAK_RX(epstatus);
epstatus = SET_VALID_TX(epstatus);
break;
case STANDARD_ENDPOINT_REQUEST_TYPE: // standard endpoint request
if(setup_packet.bRequest == CLEAR_FEATURE){
EP_WriteIRQ(0, (uint8_t *)0, 0);
epstatus = SET_NAK_RX(epstatus);
epstatus = SET_VALID_TX(epstatus);
}
break;
case VENDOR_REQUEST_TYPE:
vendor_handler(&setup_packet);
epstatus = SET_NAK_RX(epstatus);
epstatus = SET_VALID_TX(epstatus);
break;
case CONTROL_REQUEST_TYPE:
switch(setup_packet.bRequest){
@ -295,51 +304,43 @@ static uint16_t EP0_Handler(ep_t ep){
case SET_LINE_CODING: // omit this for next stage, when data will come
break;
case SET_CONTROL_LINE_STATE:
usbON = 1;
clstate_handler(setup_packet.wValue);
break;
case SEND_BREAK:
usbON = 0;
break_handler();
break;
default:
break;
}
//if(!dev2host) EP_WriteIRQ(0, (uint8_t *)0, 0); // write acknowledgement
if(setup_packet.bRequest != GET_LINE_CODING) EP_WriteIRQ(0, (uint8_t *)0, 0); // write acknowledgement
epstatus = SET_VALID_RX(epstatus);
epstatus = SET_VALID_TX(epstatus);
break;
default:
EP_WriteIRQ(0, (uint8_t *)0, 0);
epstatus = SET_NAK_RX(epstatus);
epstatus = SET_VALID_TX(epstatus);
}
}else if (ep.rx_flag){ // got data over EP0 or host acknowlegement
if(ep.rx_cnt){
//EP_WriteIRQ(0, (uint8_t *)0, 0);
}else if(rxflag){ // got data over EP0 or host acknowlegement
if(endpoints[0].rx_cnt){
if(setup_packet.bRequest == SET_LINE_CODING){
linecoding_handler((usb_LineCoding*)ep0databuf);
}
}
// wait for new data from host
epstatus = SET_VALID_RX(epstatus);
epstatus = SET_VALID_TX(epstatus);
} else if (ep.tx_flag){ // package transmitted
} else if(TX_FLAG(epstatus)){ // package transmitted
// now we can change address after enumeration
if ((USB->DADDR & USB_DADDR_ADD) != USB_Dev.USB_Addr){
USB->DADDR = USB_DADDR_EF | USB_Dev.USB_Addr;
// change state to ADRESSED
USB_Dev.USB_Status = USB_ADRESSED_STATE;
USB_Dev.USB_Status = USB_STATE_ADDRESSED;
}
// end of transaction
epstatus = CLEAR_DTOG_RX(epstatus);
epstatus = CLEAR_DTOG_TX(epstatus);
epstatus = SET_VALID_RX(epstatus);
epstatus = SET_VALID_TX(epstatus);
}
return epstatus;
epstatus = KEEP_DTOG(USB->EPnR[0]);
if(rxflag) epstatus ^= USB_EPnR_STAT_TX; // start ZLP/data transmission
else epstatus &= ~USB_EPnR_STAT_TX; // or leave unchanged
// keep DTOGs, clear CTR_RX,TX, set RX VALID
USB->EPnR[0] = (epstatus & ~(USB_EPnR_CTR_RX|USB_EPnR_CTR_TX)) ^ USB_EPnR_STAT_RX;
}
static uint16_t lastaddr = USB_EP0_BASEADDR;
static uint16_t lastaddr = LASTADDR_DEFAULT;
/**
* Endpoint initialisation
* !!! when working with CAN bus change USB_BTABLE_SIZE to 768 !!!
@ -350,13 +351,13 @@ static uint16_t lastaddr = USB_EP0_BASEADDR;
* @param uint16_t (*func)(ep_t *ep) - EP handler function
* @return 0 if all OK
*/
int EP_Init(uint8_t number, uint8_t type, uint16_t txsz, uint16_t rxsz, uint16_t (*func)(ep_t ep)){
if(number >= ENDPOINTS_NUM) return 4; // out of configured amount
int EP_Init(uint8_t number, uint8_t type, uint16_t txsz, uint16_t rxsz, void (*func)()){
if(number >= STM32ENDPOINTS) return 4; // out of configured amount
if(txsz > USB_BTABLE_SIZE || rxsz > USB_BTABLE_SIZE) return 1; // buffer too large
if(lastaddr + txsz + rxsz >= USB_BTABLE_SIZE) return 2; // out of btable
USB->EPnR[number] = (type << 9) | (number & USB_EPnR_EA);
USB->EPnR[number] ^= USB_EPnR_STAT_RX | USB_EPnR_STAT_TX_1;
if(rxsz & 1 || rxsz > 992) return 3; // wrong rx buffer size
if(rxsz & 1 || rxsz > 512) return 3; // wrong rx buffer size
uint16_t countrx = 0;
if(rxsz < 64) countrx = rxsz / 2;
else{
@ -365,6 +366,7 @@ int EP_Init(uint8_t number, uint8_t type, uint16_t txsz, uint16_t rxsz, uint16_t
}
USB_BTABLE->EP[number].USB_ADDR_TX = lastaddr;
endpoints[number].tx_buf = (uint16_t *)(USB_BTABLE_BASE + lastaddr);
endpoints[number].txbufsz = txsz;
lastaddr += txsz;
USB_BTABLE->EP[number].USB_COUNT_TX = 0;
USB_BTABLE->EP[number].USB_ADDR_RX = lastaddr;
@ -380,56 +382,48 @@ int EP_Init(uint8_t number, uint8_t type, uint16_t txsz, uint16_t rxsz, uint16_t
void usb_isr(){
if (USB->ISTR & USB_ISTR_RESET){
// Reinit registers
USB->CNTR = USB_CNTR_RESETM | USB_CNTR_CTRM;
USB->CNTR = USB_CNTR_RESETM | USB_CNTR_CTRM | USB_CNTR_SUSPM | USB_CNTR_WKUPM;
USB->ISTR = 0;
// Endpoint 0 - CONTROL
// ON USB LS size of EP0 may be 8 bytes, but on FS it should be 64 bytes!
lastaddr = USB_EP0_BASEADDR; // roll back to beginning of buffer
lastaddr = LASTADDR_DEFAULT; // roll back to beginning of buffer
EP_Init(0, EP_TYPE_CONTROL, USB_EP0_BUFSZ, USB_EP0_BUFSZ, EP0_Handler);
// clear address, leave only enable bit
USB->DADDR = USB_DADDR_EF;
USB_Dev.USB_Status = USB_DEFAULT_STATE;
if(EP_Init(0, EP_TYPE_CONTROL, USB_EP0_BUFSZ, USB_EP0_BUFSZ, EP0_Handler)){
return;
}
// state is default - wait for enumeration
USB_Dev.USB_Status = USB_STATE_DEFAULT;
}
if(USB->ISTR & USB_ISTR_CTR){
// EP number
uint8_t n = USB->ISTR & USB_ISTR_EPID;
// copy status register
uint16_t epstatus = USB->EPnR[n];
// Calculate flags
endpoints[n].rx_flag = (epstatus & USB_EPnR_CTR_RX) ? 1 : 0;
endpoints[n].setup_flag = (epstatus & USB_EPnR_SETUP) ? 1 : 0;
endpoints[n].tx_flag = (epstatus & USB_EPnR_CTR_TX) ? 1 : 0;
// copy received bytes amount
endpoints[n].rx_cnt = USB_BTABLE->EP[n].USB_COUNT_RX & 0x3FF; // low 10 bits is counter
// check direction
if(USB->ISTR & USB_ISTR_DIR){ // OUT interrupt - receive data, CTR_RX==1 (if CTR_TX == 1 - two pending transactions: receive following by transmit)
if(n == 0){ // control endpoint
if(epstatus & USB_EPnR_SETUP){ // setup packet -> copy data to conf_pack
memcpy(&setup_packet, endpoints[0].rx_buf, sizeof(setup_packet));
EP_Read(0, (uint8_t*)&setup_packet);
ep0dbuflen = 0;
// interrupt handler will be called later
}else if(epstatus & USB_EPnR_CTR_RX){ // data packet -> push received data to ep0databuf
ep0dbuflen = endpoints[0].rx_cnt;
memcpy(ep0databuf, endpoints[0].rx_buf, ep0dbuflen);
EP_Read(0, (uint8_t*)&ep0databuf);
}
}
}else{ // IN interrupt - transmit data, only CTR_TX == 1
// enumeration end could be here (if EP0)
}
// prepare status field for EP handler
endpoints[n].status = epstatus;
// call EP handler (even if it will change EPnR, it should return new status)
epstatus = endpoints[n].func(endpoints[n]);
// keep DTOG state
epstatus = KEEP_DTOG_TX(epstatus);
epstatus = KEEP_DTOG_RX(epstatus);
// clear all RX/TX flags
epstatus = CLEAR_CTR_RX(epstatus);
epstatus = CLEAR_CTR_TX(epstatus);
// refresh EPnR
USB->EPnR[n] = epstatus;
// call EP handler
if(endpoints[n].func) endpoints[n].func(endpoints[n]);
}
if(USB->ISTR & USB_ISTR_SUSP){ // suspend -> still no connection, may sleep
usbON = 0;
USB->CNTR |= USB_CNTR_FSUSP | USB_CNTR_LPMODE;
USB->ISTR = ~USB_ISTR_SUSP;
}
if(USB->ISTR & USB_ISTR_WKUP){ // wakeup
USB->CNTR &= ~(USB_CNTR_FSUSP | USB_CNTR_LPMODE); // clear suspend flags
USB->ISTR = ~USB_ISTR_WKUP;
}
}
@ -458,13 +452,10 @@ void EP_WriteIRQ(uint8_t number, const uint8_t *buf, uint16_t size){
* @param size - its size
*/
void EP_Write(uint8_t number, const uint8_t *buf, uint16_t size){
uint16_t status = USB->EPnR[number];
EP_WriteIRQ(number, buf, size);
status = SET_NAK_RX(status);
status = SET_VALID_TX(status);
status = KEEP_DTOG_TX(status);
status = KEEP_DTOG_RX(status);
USB->EPnR[number] = status;
uint16_t status = KEEP_DTOG(USB->EPnR[number]);
// keep DTOGs, clear CTR_TX & set TX VALID to start transmission
USB->EPnR[number] = (status & ~(USB_EPnR_CTR_TX)) ^ USB_EPnR_STAT_TX;
}
/*
@ -480,8 +471,3 @@ int EP_Read(uint8_t number, uint8_t *buf){
}
return n;
}
// USB status
uint8_t USB_GetState(){
return USB_Dev.USB_Status;
}

View File

@ -29,9 +29,8 @@
#include "usb_defs.h"
#define EP0DATABUF_SIZE (64)
#define LASTADDR_DEFAULT (STM32ENDPOINTS * 8)
// Max EP amount (EP0 + other used)
#define ENDPOINTS_NUM 4
// bmRequestType & 0x7f
#define STANDARD_DEVICE_REQUEST_TYPE 0
#define STANDARD_ENDPOINT_REQUEST_TYPE 2
@ -77,31 +76,21 @@
#define STRING_SN_DESCRIPTOR 0x303
#define DEVICE_QUALIFIER_DESCRIPTOR 0x600
// EPnR bits manipulation
#define CLEAR_DTOG_RX(R) (R & USB_EPnR_DTOG_RX) ? R : (R & (~USB_EPnR_DTOG_RX))
#define SET_DTOG_RX(R) (R & USB_EPnR_DTOG_RX) ? (R & (~USB_EPnR_DTOG_RX)) : R
#define TOGGLE_DTOG_RX(R) (R | USB_EPnR_DTOG_RX)
#define KEEP_DTOG_RX(R) (R & (~USB_EPnR_DTOG_RX))
#define CLEAR_DTOG_TX(R) (R & USB_EPnR_DTOG_TX) ? R : (R & (~USB_EPnR_DTOG_TX))
#define SET_DTOG_TX(R) (R & USB_EPnR_DTOG_TX) ? (R & (~USB_EPnR_DTOG_TX)) : R
#define TOGGLE_DTOG_TX(R) (R | USB_EPnR_DTOG_TX)
#define KEEP_DTOG_TX(R) (R & (~USB_EPnR_DTOG_TX))
#define SET_VALID_RX(R) ((R & USB_EPnR_STAT_RX) ^ USB_EPnR_STAT_RX) | (R & (~USB_EPnR_STAT_RX))
#define SET_NAK_RX(R) ((R & USB_EPnR_STAT_RX) ^ USB_EPnR_STAT_RX_1) | (R & (~USB_EPnR_STAT_RX))
#define SET_STALL_RX(R) ((R & USB_EPnR_STAT_RX) ^ USB_EPnR_STAT_RX_0) | (R & (~USB_EPnR_STAT_RX))
#define KEEP_STAT_RX(R) (R & (~USB_EPnR_STAT_RX))
#define SET_VALID_TX(R) ((R & USB_EPnR_STAT_TX) ^ USB_EPnR_STAT_TX) | (R & (~USB_EPnR_STAT_TX))
#define SET_NAK_TX(R) ((R & USB_EPnR_STAT_TX) ^ USB_EPnR_STAT_TX_1) | (R & (~USB_EPnR_STAT_TX))
#define SET_STALL_TX(R) ((R & USB_EPnR_STAT_TX) ^ USB_EPnR_STAT_TX_0) | (R & (~USB_EPnR_STAT_TX))
#define KEEP_STAT_TX(R) (R & (~USB_EPnR_STAT_TX))
#define CLEAR_CTR_RX(R) (R & (~USB_EPnR_CTR_RX))
#define CLEAR_CTR_TX(R) (R & (~USB_EPnR_CTR_TX))
#define CLEAR_CTR_RX_TX(R) (R & (~(USB_EPnR_CTR_TX | USB_EPnR_CTR_RX)))
#define RX_FLAG(epstat) (epstat & USB_EPnR_CTR_RX)
#define TX_FLAG(epstat) (epstat & USB_EPnR_CTR_TX)
#define SETUP_FLAG(epstat) (epstat & USB_EPnR_SETUP)
// USB state: uninitialized, addressed, ready for use
#define USB_DEFAULT_STATE 0
#define USB_ADRESSED_STATE 1
#define USB_CONFIGURE_STATE 2
// EPnR bits manipulation
#define KEEP_DTOG_STAT(EPnR) (EPnR & ~(USB_EPnR_STAT_RX|USB_EPnR_STAT_TX|USB_EPnR_DTOG_RX|USB_EPnR_DTOG_TX))
#define KEEP_DTOG(EPnR) (EPnR & ~(USB_EPnR_DTOG_RX|USB_EPnR_DTOG_TX))
// USB state: uninitialized, addressed, ready for use, client connected
typedef enum{
USB_STATE_DEFAULT,
USB_STATE_ADDRESSED,
USB_STATE_CONFIGURED,
USB_STATE_CONNECTED
} USB_state;
// EP types
#define EP_TYPE_BULK 0x00
@ -145,13 +134,10 @@ typedef struct {
// endpoints state
typedef struct __ep_t{
uint16_t *tx_buf; // transmission buffer address
uint16_t txbufsz; // transmission buffer size
uint8_t *rx_buf; // reception buffer address
uint16_t (*func)(); // endpoint action function
uint16_t status; // status flags
unsigned rx_cnt : 10; // received data counter
unsigned tx_flag : 1; // transmission flag
unsigned rx_flag : 1; // reception flag
unsigned setup_flag : 1; // this is setup packet (only for EP0)
void (*func)(); // endpoint action function
uint16_t rx_cnt; // received data counter
} ep_t;
// USB status & its address
@ -184,19 +170,20 @@ typedef struct {
} __attribute__ ((packed)) usb_cdc_notification;
extern ep_t endpoints[];
extern usb_dev_t USB_Dev;
extern uint8_t usbON;
void USB_Init();
uint8_t USB_GetState();
int EP_Init(uint8_t number, uint8_t type, uint16_t txsz, uint16_t rxsz, uint16_t (*func)(ep_t ep));
int EP_Init(uint8_t number, uint8_t type, uint16_t txsz, uint16_t rxsz, void (*func)());
void EP_WriteIRQ(uint8_t number, const uint8_t *buf, uint16_t size);
void EP_Write(uint8_t number, const uint8_t *buf, uint16_t size);
int EP_Read(uint8_t number, uint8_t *buf);
usb_LineCoding getLineCoding();
void WEAK linecoding_handler(usb_LineCoding *lc);
void WEAK clstate_handler(uint16_t val);
void WEAK break_handler();
void WEAK vendor_handler(config_pack_t *packet);
void linecoding_handler(usb_LineCoding *lc);
void clstate_handler(uint16_t val);
void break_handler();
void vendor_handler(config_pack_t *packet);
#endif // __USB_LIB_H__

View File

@ -20,143 +20,200 @@
* MA 02110-1301, USA.
*
*/
#include "stm32f0.h"
/**
ATTENTION!!
This things works only if you will add next section:
.myvars :
{
. = ALIGN(1024);
__varsstart = ABSOLUTE(.);
KEEP(*(.myvars));
} > rom
after section .data
*/
#include <stm32f0.h>
#include "adc.h"
#include "flash.h"
#include "proto.h" // printout
#include <string.h> // memcpy
#include "flash.h"
#include "usart.h"
// max amount of Config records stored (will be recalculate in flashstorage_init()
static uint32_t maxCnum = FLASH_BLOCK_SIZE / sizeof(user_conf);
// start of configuration data in flash (from 15kB, one kB size)
#define FLASH_CONF_START_ADDR ((uint32_t)0x08003C00)
static const int maxnum = 1024 / sizeof(user_conf);
#define USERCONF_INITIALIZER { \
.userconf_sz = sizeof(user_conf) \
,.defflags = 0 \
,.CANspeed = 100 \
}
user_conf the_conf = {
.userconf_sz = sizeof(user_conf)
,.devID = 0
,.v12numerator = 1
,.v12denominator = 1
,.i12numerator = 1
,.i12denominator = 1
,.v33denominator = 1
,.v33numerator = 1
,.ESW_thres = 150
};
static int erase_flash(const void*, const void*);
static int write2flash(const void*, const void*, uint32_t);
// don't write `static` here, or get error:
// 'memcpy' forming offset 8 is out of the bounds [0, 4] of object '__varsstart' with type 'uint32_t'
const user_conf *Flash_Data = (const user_conf *)(&__varsstart);
static int erase_flash();
user_conf the_conf = USERCONF_INITIALIZER;
static int get_gooddata(){
user_conf *c = (user_conf*) FLASH_CONF_START_ADDR;
// have data - move it to `the_conf`
int idx;
//write2trbuf("get_gooddata()\n");
for(idx = 0; idx < maxnum; ++idx){ // find current settings index - first good
uint16_t sz = c[idx].userconf_sz;
/*write2trbuf("idx=");
put_int((int32_t) idx);
write2trbuf(", sz=");
put_uint((uint32_t) sz);
write2trbuf(", devID=");
put_uint((uint32_t) c[idx].devID);
write2trbuf(", ESW_thres=");
put_uint((uint32_t) c[idx].ESW_thres);
SENDBUF();*/
if(sz != sizeof(user_conf)){
if(sz == 0xffff) break; // first clear
else{
return -2; // flash corrupt, need to erase
static int currentconfidx = -1; // index of current configuration
/**
* @brief binarySearch - binary search in flash for last non-empty cell
* any struct searched should have its sizeof() @ the first field!!!
* @param l - left index
* @param r - right index (should be @1 less than last index!)
* @param start - starting address
* @param stor_size - size of structure to search
* @return index of non-empty cell or -1
*/
static int binarySearch(int r, const uint8_t *start, int stor_size){
int l = 0;
while(r >= l){
int mid = l + (r - l) / 2;
const uint8_t *s = start + mid * stor_size;
if(*((const uint16_t*)s) == stor_size){
if(*((const uint16_t*)(s + stor_size)) == 0xffff){
return mid;
}else{ // element is to the right
l = mid + 1;
}
}else{ // element is to the left
r = mid - 1;
}
}
return idx-1; // -1 if there's no data at all & flash is clear; maxnum-1 if flash is full
return -1; // not found
}
void get_userconf(){
user_conf *c = (user_conf*) FLASH_CONF_START_ADDR;
int idx = get_gooddata();
if(idx < 0) return; // no data stored
memcpy(&the_conf, &c[idx], sizeof(user_conf));
/**
* @brief flashstorage_init - initialization of user conf storage
* run in once @ start
*/
void flashstorage_init(){
if(FLASH_SIZE > 0 && FLASH_SIZE < 20000){
uint32_t flsz = FLASH_SIZE * 1024; // size in bytes
flsz -= (uint32_t)(&__varsstart) - FLASH_BASE;
maxCnum = flsz / sizeof(user_conf);
//SEND("flsz="); printu(flsz);
//SEND("\nmaxCnum="); printu(maxCnum); newline(); sendbuf();
}
// -1 if there's no data at all & flash is clear; maxnum-1 if flash is full
currentconfidx = binarySearch((int)maxCnum-2, (const uint8_t*)Flash_Data, sizeof(user_conf));
if(currentconfidx > -1){
memcpy(&the_conf, &Flash_Data[currentconfidx], sizeof(user_conf));
}
}
// store new configuration
// @return 0 if all OK
int store_userconf(){
// maxnum - 3 means that there always should be at least one empty record after last data
// for binarySearch() checking that there's nothing more after it!
if(currentconfidx > (int)maxCnum - 3){ // there's no more place
currentconfidx = 0;
if(erase_flash(Flash_Data, (&__varsstart))) return 1;
}else ++currentconfidx; // take next data position (0 - within first run after firmware flashing)
return write2flash((const void*)&Flash_Data[currentconfidx], &the_conf, sizeof(the_conf));
}
static int write2flash(const void *start, const void *wrdata, uint32_t stor_size){
int ret = 0;
user_conf *c = (user_conf*) FLASH_CONF_START_ADDR;
int idx = get_gooddata();
if(idx == -2 || idx == maxnum - 1){ // data corruption or there's no more place
idx = 0;
if(erase_flash()) return 1;
}else ++idx; // take next data position
/*write2trbuf("store_userconf()\nidx=");
put_int((int32_t) idx);
SENDBUF();*/
if (FLASH->CR & FLASH_CR_LOCK){ // unloch flash
FLASH->KEYR = FLASH_FKEY1;
FLASH->KEYR = FLASH_FKEY2;
FLASH->KEYR = FLASH_KEY1;
FLASH->KEYR = FLASH_KEY2;
}
while (FLASH->SR & FLASH_SR_BSY);
if(FLASH->SR & FLASH_SR_WRPERR) return 1; // write protection
FLASH->SR = FLASH_SR_EOP | FLASH_SR_PGERR | FLASH_SR_WRPERR; // clear all flags
if(FLASH->SR & FLASH_SR_WRPRTERR){
MSG("Can't remove write protection\n");
return 1; // write protection
}
FLASH->SR = FLASH_SR_EOP | FLASH_SR_PGERR | FLASH_SR_WRPRTERR; // clear all flags
FLASH->CR |= FLASH_CR_PG;
uint16_t *data = (uint16_t*) &the_conf;
uint16_t *address = (uint16_t*) &c[idx];
uint32_t i, count = sizeof(user_conf) / 2;
const uint16_t *data = (const uint16_t*) wrdata;
volatile uint16_t *address = (volatile uint16_t*) start;
uint32_t i, count = (stor_size + 1) / 2;
for (i = 0; i < count; ++i){
IWDG->KR = IWDG_REFRESH;
*(volatile uint16_t*)(address + i) = data[i];
while (FLASH->SR & FLASH_SR_BSY);
if(FLASH->SR & FLASH_SR_PGERR) ret = 1; // program error - meet not 0xffff
else while (!(FLASH->SR & FLASH_SR_EOP));
/*write2trbuf("write byte ");
put_int((int32_t) i);
write2trbuf(", write value=");
put_uint(data[i]);
write2trbuf(", read value=");
put_uint(address[i]);
SENDBUF();
if(ret){
write2trbuf("PGERR");
SENDBUF();*/
}
FLASH->SR = FLASH_SR_EOP | FLASH_SR_PGERR | FLASH_SR_WRPERR;
if(FLASH->SR & FLASH_SR_PGERR){
ret = 1; // program error - meet not 0xffff
MSG("FLASH_SR_PGERR\n");
break;
}else while (!(FLASH->SR & FLASH_SR_EOP));
FLASH->SR = FLASH_SR_EOP | FLASH_SR_PGERR | FLASH_SR_WRPRTERR;
}
FLASH->CR |= FLASH_CR_LOCK; // lock it back
FLASH->CR &= ~(FLASH_CR_PG);
MSG("Flash stored\n");
return ret;
}
static int erase_flash(){
/**
* @brief erase_flash - erase N pages of flash memory
* @param start - first address
* @param end - last address (or NULL if need to erase all flash remaining)
* @return 0 if succeed
*/
static int erase_flash(const void *start, const void *end){
int ret = 0;
/*write2trbuf("erase_flash()");
SENDBUF();*/
/* (1) Wait till no operation is on going */
/* (2) Clear error & EOP bits */
/* (3) Check that the Flash is unlocked */
/* (4) Perform unlock sequence */
while ((FLASH->SR & FLASH_SR_BSY) != 0){} /* (1) */
FLASH->SR = FLASH_SR_EOP | FLASH_SR_PGERR | FLASH_SR_WRPERR; /* (2) */
/* if (FLASH->SR & FLASH_SR_EOP){
FLASH->SR |= FLASH_SR_EOP;
}*/
if ((FLASH->CR & FLASH_CR_LOCK) != 0){ /* (3) */
FLASH->KEYR = FLASH_FKEY1; /* (4) */
FLASH->KEYR = FLASH_FKEY2;
uint32_t nblocks = 1, flsz = 0;
if(!end){ // erase all remaining
if(FLASH_SIZE > 0 && FLASH_SIZE < 20000){
flsz = FLASH_SIZE * 1024; // size in bytes
flsz -= (uint32_t)start - FLASH_BASE;
}
}else{ // erase a part
flsz = (uint32_t)end - (uint32_t)start;
}
/* (1) Set the PER bit in the FLASH_CR register to enable page erasing */
/* (2) Program the FLASH_AR register to select a page to erase */
/* (3) Set the STRT bit in the FLASH_CR register to start the erasing */
/* (4) Wait until the EOP flag in the FLASH_SR register set */
/* (5) Clear EOP flag by software by writing EOP at 1 */
/* (6) Reset the PER Bit to disable the page erase */
FLASH->CR |= FLASH_CR_PER; /* (1) */
FLASH->AR = FLASH_CONF_START_ADDR; /* (2) */
FLASH->CR |= FLASH_CR_STRT; /* (3) */
while(!(FLASH->SR & FLASH_SR_EOP));
FLASH->SR |= FLASH_SR_EOP; /* (5)*/
if(FLASH->SR & FLASH_SR_WRPERR){ /* Check Write protection error */
ret = 1;
FLASH->SR |= FLASH_SR_WRPERR; /* Clear the flag by software by writing it at 1*/
nblocks = flsz / FLASH_BLOCK_SIZE;
if(nblocks == 0 || nblocks >= FLASH_SIZE) return 1;
for(uint32_t i = 0; i < nblocks; ++i){
#ifdef EBUG
SEND("Try to erase page #"); printu(i); newline(); sendbuf();
#endif
IWDG->KR = IWDG_REFRESH;
/* (1) Wait till no operation is on going */
/* (2) Clear error & EOP bits */
/* (3) Check that the Flash is unlocked */
/* (4) Perform unlock sequence */
while ((FLASH->SR & FLASH_SR_BSY) != 0){} /* (1) */
FLASH->SR = FLASH_SR_EOP | FLASH_SR_PGERR | FLASH_SR_WRPRTERR; /* (2) */
/* if (FLASH->SR & FLASH_SR_EOP){
FLASH->SR |= FLASH_SR_EOP;
}*/
if ((FLASH->CR & FLASH_CR_LOCK) != 0){ /* (3) */
FLASH->KEYR = FLASH_KEY1; /* (4) */
FLASH->KEYR = FLASH_KEY2;
}
/* (1) Set the PER bit in the FLASH_CR register to enable page erasing */
/* (2) Program the FLASH_AR register to select a page to erase */
/* (3) Set the STRT bit in the FLASH_CR register to start the erasing */
/* (4) Wait until the EOP flag in the FLASH_SR register set */
/* (5) Clear EOP flag by software by writing EOP at 1 */
/* (6) Reset the PER Bit to disable the page erase */
FLASH->CR |= FLASH_CR_PER; /* (1) */
FLASH->AR = (uint32_t)Flash_Data + i*FLASH_BLOCK_SIZE; /* (2) */
FLASH->CR |= FLASH_CR_STRT; /* (3) */
while(!(FLASH->SR & FLASH_SR_EOP));
FLASH->SR |= FLASH_SR_EOP; /* (5)*/
if(FLASH->SR & FLASH_SR_WRPRTERR){ /* Check Write protection error */
ret = 1;
MSG("Write protection error!\n");
FLASH->SR |= FLASH_SR_WRPRTERR; /* Clear the flag by software by writing it at 1*/
break;
}
FLASH->CR &= ~FLASH_CR_PER; /* (6) */
}
FLASH->CR &= ~FLASH_CR_PER; /* (6) */
return ret;
}
void dump_userconf(){
SEND("userconf_addr="); printuhex((uint32_t)Flash_Data);
SEND("\nuserconf_sz="); printu(the_conf.userconf_sz);
SEND("\nflags="); printuhex(the_conf.defflags);
SEND("\nCANspeed="); printu(the_conf.CANspeed);
newline();
sendbuf();
}

View File

@ -1,5 +1,4 @@
/*
* geany_encoding=koi8-r
* flash.h
*
* Copyright 2017 Edward V. Emelianov <eddy@sao.ru, edward.emelianoff@gmail.com>
@ -25,22 +24,27 @@
#ifndef __FLASH_H__
#define __FLASH_H__
typedef struct{
uint16_t userconf_sz; // size of data
uint16_t devID; // device address (id)
uint16_t ESW_thres; // ADC threshold for end-switches/Hall sensors
// calibration values for current/voltage sensors
uint16_t v12numerator; // 12V to motors
uint16_t v12denominator;
uint16_t i12numerator; // motors' current
uint16_t i12denominator;
uint16_t v33numerator; // 3.3V (vref)
uint16_t v33denominator;
#include "hardware.h"
#define FLASH_BLOCK_SIZE (1024)
#define FLASH_SIZE_REG ((uint32_t)0x1FFFF7CC)
#define FLASH_SIZE *((uint16_t*)FLASH_SIZE_REG)
/*
* struct to save user configurations
*/
typedef struct __attribute__((packed, aligned(4))){
uint16_t userconf_sz; // "magick number"
uint8_t defflags; // default flags
uint16_t CANspeed; // default CAN speed
} user_conf;
extern user_conf the_conf;
extern user_conf the_conf; // global user config (read from FLASH to RAM)
// data from ld-file: start address of storage
extern const uint32_t __varsstart;
void get_userconf();
void flashstorage_init();
int store_userconf();
void dump_userconf();
#endif // __FLASH_H__

View File

@ -4,7 +4,6 @@ void printuhex(uint32_t val){
uint8_t *ptr = (uint8_t*)&val + 3;
int8_t i, j;
for(i = 0; i < 4; ++i, --ptr){
if(*ptr == 0 && i != 3) continue; // omit leading zeros
for(j = 1; j > -1; --j){
uint8_t half = (*ptr >> (4*j)) & 0x0f;
if(half < 10) bufputchar(half + '0');

View File

@ -182,6 +182,11 @@ TRUE_INLINE void StartHSI48(){
#define GPIO_MODER_MODER15_AF ((uint32_t)0x80000000)
/****************** FLASH Keys **********************************************/
#define RDP_Key ((uint16_t)0x00A5)
#define FLASH_KEY1 ((uint32_t)0x45670123)
#define FLASH_KEY2 ((uint32_t)0xCDEF89AB)
/************************* ADC *************************/
/* inner termometer calibration values
* Temp = (V30 - Vsense)/Avg_Slope + 30

View File

@ -74,7 +74,8 @@ SECTIONS {
.myvars :
{
. = ALIGN(1024);
KEEP(*(.myvars))
__varsstart = ABSOLUTE(.);
KEEP(*(.myvars));
} > rom
_ldata = LOADADDR(.data);

View File

@ -367,7 +367,7 @@ static void can_process_fifo(uint8_t fifo_num){
/* TODO: check filter match index if more than one ID can receive */
CAN_message msg;
uint8_t *dat = msg.data;
uint8_t len = box->RDTR & 0x7;
uint8_t len = box->RDTR & 0x0f;
msg.length = len;
msg.ID = box->RIR >> 21;
//msg.filterNo = (box->RDTR >> 8) & 0xff;

View File

@ -167,7 +167,7 @@ static CAN_message *parseCANmsg(char *txt){
return NULL;
}
canmsg.ID = (uint16_t)(N&0x7ff);
SEND("ID="); printuhex(canmsg.ID); newline();
//SEND("ID="); printuhex(canmsg.ID); newline();
ctr = 0;
continue;
}
@ -546,7 +546,6 @@ void printuhex(uint32_t val){
uint8_t *ptr = (uint8_t*)&val + 3;
int8_t i, j;
for(i = 0; i < 4; ++i, --ptr){
if(*ptr == 0 && i != 3) continue; // omit leading zeros
for(j = 1; j > -1; --j){
uint8_t half = (*ptr >> (4*j)) & 0x0f;
if(half < 10) bufputchar(half + '0');

Binary file not shown.