281 lines
8.6 KiB
C

/*
* This file is part of the PCS_create project.
* Copyright 2023 Edward V. Emelianov <edward.emelianoff@gmail.com>.
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <usefull_macros.h>
#include "sofatools.h"
static placeData *pldata = NULL;
// temporal stubs for weather/place/DUT1 data; return 0 if all OK
placeData *getPlace(){
if(pldata) return pldata;
pldata = malloc(sizeof(placeData));
/* Site longitude, latitude (radians) and height above the geoid (m). */
pldata->slong = 0.7232763200;
pldata->slat = 0.7618977414;
pldata->salt = 2070.0; // altitude
return pldata;
}
static placeWeather W = {0};
// set weather parameters: pressure, temperature and humidity
void setWeath(double P, double T, double H){
W.php = P;
W.tc = T;
W.relhum = H;
}
int getWeath(placeWeather *w){
if(!w) return 0;
memcpy(w, &W, sizeof(placeWeather));
return 0;
}
int getDUT(almDut *a){
if(!a) return 0;
a->px = a->py = 0;
a->DUT1 = -0.25080;
return 0;
}
char *radtodeg(double r){
static char buf[128];
int i[4]; char pm;
r = eraAnpm(r); // normalize angle into range +/- pi
eraA2af(2, r, &pm, i);
snprintf(buf, 128, "%c%02d %02d %02d.%02d", pm, i[0],i[1],i[2],i[3]);
return buf;
}
char *radtohrs(double r){
static char buf[128];
int i[4]; char pm;
r = eraAnp(r); // normalize angle into range 0 to 2pi
eraA2tf(2, r, &pm, i);
snprintf(buf, 128, "%02d:%02d:%02d.%02d", i[0],i[1],i[2],i[3]);
return buf;
}
/**
* @brief get_MJDt - calculate MJD of date from argument
* @param tval (i) - given date (or NULL for current)
* @param MJD (o) - time (or NULL just to check)
* @return 0 if all OK
*/
int get_MJDt(struct timeval *tval, sMJD *MJD){
struct tm tms;
double tSeconds;
if(!tval){
//DBG("MJD for current time");
struct timeval currentTime;
gettimeofday(&currentTime, NULL);
gmtime_r(&currentTime.tv_sec, &tms);
tSeconds = tms.tm_sec + ((double)currentTime.tv_usec)/1e6;
}else{
gmtime_r(&tval->tv_sec, &tms);
tSeconds = tms.tm_sec + ((double)tval->tv_usec)/1e6;
}
int y, m, d;
y = 1900 + tms.tm_year;
m = tms.tm_mon + 1;
d = tms.tm_mday;
double utc1, utc2;
/* UTC date. */
if(eraDtf2d("UTC", y, m, d, tms.tm_hour, tms.tm_min, tSeconds, &utc1, &utc2) < 0) return -1;
if(!MJD) return 0;
MJD->MJD = utc1 - 2400000.5 + utc2;
MJD->utc1 = utc1;
MJD->utc2 = utc2;
//DBG("UTC(m): %g, %.8f\n", utc1 - 2400000.5, utc2);
if(eraUtctai(utc1, utc2, &MJD->tai1, &MJD->tai2)) return -1;
//DBG("TAI");
if(eraTaitt(MJD->tai1, MJD->tai2, &MJD->tt1, &MJD->tt2)) return -1;
//DBG("TT");
return 0;
}
/**
* @brief get_LST - calculate local siderial time
* @param mjd (i) - date/time for LST (utc1 & tt used)
* @param dUT1 - (UT1-UTC)
* @param slong - site longitude (radians)
* @param LST (o) - local sidereal time (radians)
* @return 0 if all OK
*/
int get_LST(sMJD *mjd, double dUT1, double slong, double *LST){
double ut11, ut12;
if(eraUtcut1(mjd->utc1, mjd->utc2, dUT1, &ut11, &ut12)) return 1;
/*double era = iauEra00(ut11, ut12) + slong;
double eo = iauEe06a(mjd->tt1, mjd->tt2);
printf("ERA = %s; ", radtohrs(era));
printf("ERA-eo = %s\n", radtohrs(era-eo));*/
if(!LST) return 0;
double ST = eraGst06a(ut11, ut12, mjd->tt1, mjd->tt2);
ST += slong;
//if(ST > ERFA_D2PI) ST -= ERFA_D2PI;
//else if(ST < 0.) ST += ERFA_D2PI;
*LST = eraAnp(ST); // 0..2pi
return 0;
}
/**
* @brief hor2eq - convert horizontal coordinates to polar
* @param h (i) - horizontal coordinates
* @param pc (o) - polar coordinates
* @param sidTime - sidereal time
*/
void hor2eq(horizCrds *h, polarCrds *pc, double sidTime){
if(!h || !pc) return;
placeData *p = getPlace();
eraAe2hd(h->az, ERFA_DPI/2. - h->zd, p->slat, &pc->ha, &pc->dec); // A,H -> HA,DEC; phi - site latitude
pc->ra = sidTime - pc->ha;
pc->eo = 0.;
}
/**
* @brief eq2horH - convert polar coordinates to horizontal
* @param pc (i) - polar coordinates (only HA used)
* @param h (o) - horizontal coordinates
* @param sidTime - sidereal time
*/
void eq2horH(polarCrds *pc, horizCrds *h){
if(!h || !pc) return;
placeData *p = getPlace();
double alt;
eraHd2ae(pc->ha, pc->dec, p->slat, &h->az, &alt);
h->zd = ERFA_DPI/2. - alt;
}
/**
* @brief eq2hor - convert polar coordinates to horizontal
* @param pc (i) - polar coordinates (only RA used)
* @param h (o) - horizontal coordinates
* @param sidTime - sidereal time
*/
void eq2hor(polarCrds *pc, horizCrds *h, double sidTime){
if(!h || !pc) return;
double ha = sidTime - pc->ra + pc->eo;
placeData *p = getPlace();
double alt;
eraHd2ae(ha, pc->dec, p->slat, &h->az, &alt);
h->zd = ERFA_DPI/2. - alt;
}
/**
* @brief get_ObsPlace - calculate observed place (without PM etc) for given date @550nm
* @param tval (i) - time
* @param p2000 (i) - polar coordinates for J2000 (only ra/dec used), ICRS (catalog)
* @param pnow (o) - polar coordinates for given epoch (or NULL)
* @param hnow (o) - horizontal coordinates for given epoch (or NULL)
* @return 0 if all OK
*/
int get_ObsPlace(struct timeval *tval, polarCrds *p2000, polarCrds *pnow, horizCrds *hnow){
double pr = 0.0; // RA proper motion (radians/year; Note 2)
double pd = 0.0; // Dec proper motion (radians/year)
double px = 0.0; // parallax (arcsec)
double rv = 0.0; // radial velocity (km/s, positive if receding)
sMJD MJD;
if(get_MJDt(tval, &MJD)) return -1;
if(!p2000) return -1;
placeData *p = getPlace();
placeWeather w;
almDut d;
if(!p) return -1;
if(getWeath(&w)) return -1;
if(getDUT(&d)) return -1;
/* Effective wavelength (microns) */
double wl = 0.55;
/* ICRS to observed. */
double aob, zob, hob, dob, rob, eo;
if(eraAtco13(p2000->ra, p2000->dec,
pr, pd, px, rv,
MJD.utc1, MJD.utc2,
d.DUT1,
p->slong, p->slat, p->salt,
d.px, d.py,
w.php, w.tc, w.relhum,
wl,
&aob, &zob,
&hob, &dob, &rob, &eo)) return -1;
DBG("(RA/HA/DEC) J2000: %g/%g/%g; Jnow: %g/%g/%g", p2000->ra, p2000->ha, p2000->dec, rob, hob, dob);
if(pnow){
pnow->eo = eo;
pnow->ha = hob;
pnow->ra = rob;
pnow->dec = dob;
}
if(hnow){
hnow->az = aob;
hnow->zd = zob;
}
return 0;
}
#if 0
typedef struct{
double ra;
double dec;
} polar;
/**
* @brief J2000toJnow - convert ra/dec between epochs
* @param in - J2000 (degrees)
* @param out - Jnow (degrees)
* @return
*/
int J2000toJnow(const polar *in, polar *out){
if(!out) return 1;
double utc1, utc2;
time_t tsec;
struct tm *ts;
tsec = time(0); // number of seconds since the Epoch, 1970-01-01 00:00:00 +0000 (UTC)
ts = gmtime(&tsec);
int result = 0;
result = iauDtf2d ( "UTC", ts->tm_year+1900, ts->tm_mon+1, ts->tm_mday, ts->tm_hour, ts->tm_min, ts->tm_sec, &utc1, &utc2 );
if (result != 0) {
fprintf(stderr, "iauDtf2d call failed\n");
return 1;
}
// Make TT julian date for Atci13 call
double tai1, tai2;
double tt1, tt2;
result = iauUtctai(utc1, utc2, &tai1, &tai2);
if(result){
fprintf(stderr, "iauUtctai call failed\n");
return 1;
}
result = iauTaitt(tai1, tai2, &tt1, &tt2);
if(result){
fprintf(stderr, "iauTaitt call failed\n");
return 1;
}
double pr = 0.0; // RA proper motion (radians/year; Note 2)
double pd = 0.0; // Dec proper motion (radians/year)
double px = 0.0; // parallax (arcsec)
double rv = 0.0; // radial velocity (km/s, positive if receding)
double rc = DD2R * in->ra, dc = DD2R * in->dec; // convert into radians
double ri, di, eo;
iauAtci13(rc, dc, pr, pd, px, rv, tt1, tt2, &ri, &di, &eo);
out->ra = iauAnp(ri - eo) * DR2D;
out->dec = di * DR2D;
return 0;
}
#endif