2020-05-19 20:23:14 +03:00

292 lines
8.7 KiB
C

#include <sofa.h>
#include <sofam.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/time.h>
#include <time.h>
typedef struct{
double utc1; double utc2; // UTC JD, commonly used MJD = utc1+utc2-2400000.5
double MJD;
double tai1; double tai2; // TAI JD
double tt1; double tt2; // TT JD
} sMJD;
// polar coordinates & equation of origins (all in radians)
typedef struct{
double ha; // hour angle
double dec; // declination
double ra; // right ascension
double eo; // equation of origins
} polarCrds;
// horizontal coordinates (all in radians)
typedef struct{
double az; // azimuth, 0 @ south, positive clockwise
double zd; // zenith distance
} horizCrds;
// observational place coordinates and altitude; all coordinates are in radians!
typedef struct{
double slong; // longitude
double slat; // lattitude
double salt; // altitude, m
} placeData;
// place weather data
typedef struct{
double relhum; // rel. humidity, 0..1
double php; // atm. pressure (hectopascales)
double tc; // temperature, degrC
} placeWeather;
// DUT/polar almanach data
typedef struct{
double DUT1; // UT1-UTC, sec
double px; // polar coordinates, arcsec
double py;
} almDut;
static placeData *pldata = NULL;
// temporal stubs for weather/place/DUT1 data; return 0 if all OK
placeData *getPlace(){
if(pldata) return pldata;
pldata = malloc(sizeof(placeData));
/* Site longitude, latitude (radians) and height above the geoid (m). */
pldata->slong = 0.7232763200;
pldata->slat = 0.7618977414;
pldata->salt = 2070.0; // altitude
return pldata;
}
int getWeath(placeWeather *w){
if(!w) return 0;
w->relhum = 0.7;
w->tc = 1.;
w->php = 780.;
return 0;
}
int getDUT(almDut *a){
if(!a) return 0;
a->px = a->py = 0;
a->DUT1 = -0.25080;
return 0;
}
char *radtodeg(double r){
static char buf[128];
int i[4]; char pm;
r = iauAnpm(r);
iauA2af (2, r, &pm, i);
snprintf(buf, 128, "%c%02d %02d %02d.%02d", pm, i[0],i[1],i[2],i[3]);
return buf;
}
char *radtohrs(double r){
static char buf[128];
int i[4]; char pm;
r = iauAnp(r);
iauA2tf(2, r, &pm, i);
snprintf(buf, 128, "%02d:%02d:%02d.%02d", i[0],i[1],i[2],i[3]);
return buf;
}
/**
* @brief get_MJDt - calculate MJD of date from argument
* @param tval (i) - given date (or NULL for current)
* @param MJD (o) - time (or NULL just to check)
* @return 0 if all OK
*/
int get_MJDt(struct timeval *tval, sMJD *MJD){
struct tm tms;
double tSeconds;
if(!tval){
//DBG("MJD for current time");
struct timeval currentTime;
gettimeofday(&currentTime, NULL);
gmtime_r(&currentTime.tv_sec, &tms);
tSeconds = tms.tm_sec + ((double)currentTime.tv_usec)/1e6;
}else{
gmtime_r(&tval->tv_sec, &tms);
tSeconds = tms.tm_sec + ((double)tval->tv_usec)/1e6;
}
int y, m, d;
y = 1900 + tms.tm_year;
m = tms.tm_mon + 1;
d = tms.tm_mday;
double utc1, utc2;
/* UTC date. */
if(iauDtf2d("UTC", y, m, d, tms.tm_hour, tms.tm_min, tSeconds, &utc1, &utc2) < 0) return -1;
if(!MJD) return 0;
MJD->MJD = utc1 - 2400000.5 + utc2;
MJD->utc1 = utc1;
MJD->utc2 = utc2;
//DBG("UTC(m): %g, %.8f\n", utc1 - 2400000.5, utc2);
if(iauUtctai(utc1, utc2, &MJD->tai1, &MJD->tai2)) return -1;
//DBG("TAI");
if(iauTaitt(MJD->tai1, MJD->tai2, &MJD->tt1, &MJD->tt2)) return -1;
//DBG("TT");
return 0;
}
/**
* @brief get_LST - calculate local siderial time
* @param mjd (i) - date/time for LST (utc1 & tt used)
* @param dUT1 - (UT1-UTC)
* @param slong - site longitude (radians)
* @param LST (o) - local sidereal time (radians)
* @return 0 if all OK
*/
double get_LST(sMJD *mjd, double dUT1, double slong, double *LST){
double ut11, ut12;
if(iauUtcut1(mjd->utc1, mjd->utc2, dUT1, &ut11, &ut12)) return 1;
double ST = iauGst06a(ut11, ut12, mjd->tt1, mjd->tt2);
ST += slong;
if(ST > D2PI) ST -= D2PI;
if(LST) *LST = ST;
return 0;
}
/**
* @brief hor2eq - convert horizontal coordinates to polar
* @param h (i) - horizontal coordinates
* @param pc (o) - polar coordinates
* @param sidTime - sidereal time
*/
void hor2eq(horizCrds *h, polarCrds *pc, double sidTime){
if(!h || !pc) return;
placeData *p = getPlace();
iauAe2hd(h->az, DPI/2. - h->zd, p->slat, &pc->ha, &pc->dec); // A,H -> HA,DEC; phi - site latitude
pc->ra = sidTime - pc->ha;
pc->eo = 0.;
}
/**
* @brief eq2horH - convert polar coordinates to horizontal
* @param pc (i) - polar coordinates (only HA used)
* @param h (o) - horizontal coordinates
* @param sidTime - sidereal time
*/
void eq2horH(polarCrds *pc, horizCrds *h){
if(!h || !pc) return;
placeData *p = getPlace();
double alt;
iauHd2ae(pc->ha, pc->dec, p->slat, &h->az, &alt);
h->zd = DPI/2. - alt;
}
/**
* @brief eq2hor - convert polar coordinates to horizontal
* @param pc (i) - polar coordinates (only RA used)
* @param h (o) - horizontal coordinates
* @param sidTime - sidereal time
*/
void eq2hor(polarCrds *pc, horizCrds *h, double sidTime){
if(!h || !pc) return;
double ha = sidTime - pc->ra + pc->eo;
placeData *p = getPlace();
double alt;
iauHd2ae(ha, pc->dec, p->slat, &h->az, &alt);
h->zd = DPI/2. - alt;
}
/**
* @brief get_ObsPlace - calculate observed place (without PM etc) for given date @550nm
* @param tval (i) - time
* @param p2000 (i) - polar coordinates for J2000 (only ra/dec used), ICRS (catalog)
* @param pnow (o) - polar coordinates for given epoch (or NULL)
* @param hnow (o) - horizontal coordinates for given epoch (or NULL)
* @return 0 if all OK
*/
int get_ObsPlace(struct timeval *tval, polarCrds *p2000, polarCrds *pnow, horizCrds *hnow){
double pr = 0.0; // RA proper motion (radians/year; Note 2)
double pd = 0.0; // Dec proper motion (radians/year)
double px = 0.0; // parallax (arcsec)
double rv = 0.0; // radial velocity (km/s, positive if receding)
sMJD MJD;
if(get_MJDt(tval, &MJD)) return -1;
if(!p2000) return -1;
placeData *p = getPlace();
placeWeather w;
almDut d;
if(!p) return -1;
if(getWeath(&w)) return -1;
if(getDUT(&d)) return -1;
/* Effective wavelength (microns) */
double wl = 0.55;
/* ICRS to observed. */
double aob, zob, hob, dob, rob, eo;
if(iauAtco13(p2000->ra, p2000->dec,
pr, pd, px, rv,
MJD.utc1, MJD.utc2,
d.DUT1,
p->slong, p->slat, p->salt,
d.px, d.py,
w.php, w.tc, w.relhum,
wl,
&aob, &zob,
&hob, &dob, &rob, &eo)) return -1;
if(pnow){
pnow->eo = eo;
pnow->ha = hob;
pnow->ra = rob;
pnow->dec = dob;
}
if(hnow){
hnow->az = aob;
hnow->zd = zob;
}
return 0;
}
// Y M D MJD x(arcsec) y(arcsec) UT1-UTC(sec)
// 2020 5 15 58984 0.0986 0.4466 -0.25080
int main(){
sMJD mjd;
struct timeval tv;
gettimeofday(&tv, NULL);
if(get_MJDt(&tv, &mjd)) return 1;
double ST;
almDut adut;
if(getDUT(&adut)) return 1;
placeData *place = getPlace();
if(!place) return 1;
if(get_LST(&mjd, adut.DUT1, place->slong, &ST)) return 1;
printf("ST = %s\n", radtohrs(ST));
horizCrds htest = {.az = DD2R*91., .zd = DPI/4.}; // Z=45degr, A=1degr from south to west
printf("hzd=%g\n", htest.zd);
polarCrds ptest;
hor2eq(&htest, &ptest, ST);
printf("A=%s, ", radtodeg(htest.az));
printf("Z=%s; ", radtodeg(htest.zd));
printf("HOR->EQ: HA=%s, ", radtohrs(ptest.ha));
printf("RA=%s, ", radtohrs(ptest.ra));
printf("DEC=%s\n", radtodeg(ptest.dec));
horizCrds h2;
eq2hor(&ptest, &h2, ST);
printf("Back conversion EQ->HOR: A=%s, ", radtodeg(h2.az));
printf("Z=%s\n", radtodeg(h2.zd));
polarCrds pnow;
if(!get_ObsPlace(&tv, &ptest, &pnow, &h2)){
printf("\nApparent place, RA=%s, ", radtohrs(pnow.ra-pnow.eo));
printf("HA=%s, ", radtohrs(pnow.ha));
printf("ST-RA=%s, ", radtohrs(ST-pnow.ra+pnow.eo));
printf("DEC=%s; ", radtodeg(pnow.dec));
printf("A=%s, ", radtodeg(h2.az));
printf("Z=%s\n", radtodeg(h2.zd));
polarCrds h2p;
hor2eq(&h2, &h2p, ST);
printf("\tHOR->EQ: RA=%s, ", radtohrs(h2p.ra-h2p.eo));
printf("HA=%s, ", radtohrs(h2p.ha));
printf("ST-RA=%s, ", radtohrs(ST-h2p.ra+h2p.eo));
printf("DEC=%s\n", radtodeg(h2p.dec));
eq2hor(&pnow, &h2, ST);
//eq2horH(&pnow, &h2);
printf("\tEQ->HOR: A=%s, ", radtodeg(h2.az));
printf("Z=%s\n", radtodeg(h2.zd));
}
return 0;
}