mountcontrol/cxx/mcc_mount_concepts.h

271 lines
10 KiB
C++

#pragma once
/* MOUNT CONTROL COMPONENTS LIBRARY */
#include <concepts>
#include "mcc_mount_coord.h"
#include "mcc_traits.h"
/* SOME LIBRARY-WIDE DECLARATIONS */
namespace mcc
{
// mount construction type (only the most common ones)
enum class MccMountType : uint8_t { GERMAN_TYPE, FORK_TYPE, CROSSAXIS_TYPE, ALTAZ_TYPE };
template <MccMountType TYPE>
static constexpr std::string_view MccMountTypeStr = TYPE == MccMountType::GERMAN_TYPE ? "GERMAN"
: TYPE == MccMountType::FORK_TYPE ? "FORK"
: TYPE == MccMountType::CROSSAXIS_TYPE ? "CROSSAXIS"
: TYPE == MccMountType::ALTAZ_TYPE ? "ALTAZ"
: "UNKNOWN";
template <MccMountType TYPE>
static constexpr bool mcc_is_equatorial_mount = TYPE == MccMountType::GERMAN_TYPE ? true
: TYPE == MccMountType::FORK_TYPE ? true
: TYPE == MccMountType::CROSSAXIS_TYPE ? true
: TYPE == MccMountType::ALTAZ_TYPE ? false
: false;
template <MccMountType TYPE>
static constexpr bool mcc_is_altaz_mount = TYPE == MccMountType::GERMAN_TYPE ? false
: TYPE == MccMountType::FORK_TYPE ? false
: TYPE == MccMountType::CROSSAXIS_TYPE ? false
: TYPE == MccMountType::ALTAZ_TYPE ? true
: false;
static consteval bool mccIsEquatorialMount(const MccMountType type)
{
return type == MccMountType::GERMAN_TYPE ? true
: type == MccMountType::FORK_TYPE ? true
: type == MccMountType::CROSSAXIS_TYPE ? true
: type == MccMountType::ALTAZ_TYPE ? false
: false;
};
static consteval bool mccIsAltAzMount(const MccMountType type)
{
return type == MccMountType::GERMAN_TYPE ? false
: type == MccMountType::FORK_TYPE ? false
: type == MccMountType::CROSSAXIS_TYPE ? false
: type == MccMountType::ALTAZ_TYPE ? true
: false;
};
} // namespace mcc
namespace mcc::traits
{
/* ASTROMETRY-RELATED COMPUTATION ENGINE */
template <typename T>
concept mcc_astrom_engine_c = requires(T t, const T t_const) {
requires mcc_error_c<typename T::error_t>;
typename T::engine_state_t;
requires std::movable<typename T::engine_state_t>;
typename T::coord_t; // type for coordinates representation
typename T::time_point_t; // type to represent UTC time point
typename T::juldate_t; // type to represent Julian date
typename T::sideral_time_t; // type to represent sideral time
typename T::pa_t; // type to represent parallactic angle
typename T::refract_result_t;
{ t.setState(std::declval<typename T::engine_state_t>()) };
{ t_const.getState() } -> std::same_as<typename T::engine_state_t>;
{ t_const.errorString(std::declval<typename T::error_t>()) } -> mcc_formattable;
/* coordinates conversional methods */
// ICRS RA and DEC to observed place: icrs2obs(ra, dec, jd, ra_app, dec_app, ha, az, alt)
{
t.icrs2obs(std::declval<typename T::coord_t>(), std::declval<typename T::coord_t>(),
std::declval<typename T::juldate_t>(), std::declval<typename T::coord_t&>(),
std::declval<typename T::coord_t&>(), std::declval<typename T::coord_t&>(),
std::declval<typename T::coord_t&>(), std::declval<typename T::coord_t&>())
} -> std::same_as<typename T::error_t>;
// compute hour angle and declination from azimuth and altitude: hadec2azalt(ha, dec, az, alt)
{
t.hadec2azalt(std::declval<typename T::coord_t>(), std::declval<typename T::coord_t>(),
std::declval<typename T::coord_t&>(), std::declval<typename T::coord_t&>())
} -> std::same_as<typename T::error_t>;
// compute azimuth and altitude from hour angle and declination: azalt2hadec(az, alt, ha, dec)
{
t.azalt2hadec(std::declval<typename T::coord_t>(), std::declval<typename T::coord_t>(),
std::declval<typename T::coord_t&>(), std::declval<typename T::coord_t&>())
} -> std::same_as<typename T::error_t>;
// compute parallactic angle: hadec2pa(ha, dec, pa)
{
t.hadec2pa(std::declval<typename T::coord_t>(), std::declval<typename T::coord_t>(),
std::declval<typename T::pa_t&>())
} -> std::same_as<typename T::error_t>;
// compute equation of origins
{
t.eqOrigins(std::declval<typename T::juldate_t>(), std::declval<typename T::eo_t&>())
} -> std::same_as<typename T::error_t>;
/* time-related methods */
// Gregorian Calendar time point to Julian Date: greg2jul(time_point, jd)
{
t.greg2jul(std::declval<typename T::time_point_t>(), std::declval<typename T::juldate_t&>())
} -> std::same_as<typename T::error_t>;
// apparent sideral time: apparentSiderTime(jd, gst, islocal)
// if islocal == false then the method must return the Greenwich apparent sideral time, otherwise - local one
{
t.apparentSiderTime(std::declval<typename T::juldate_t>(), std::declval<typename T::sideral_time_t&>(),
std::declval<bool>())
} -> std::same_as<typename T::error_t>;
/* atmospheric refraction-related methods */
// compute refraction-related quantities: refraction(refr_params)
{ t.refraction(std::declval<typename T::refract_result_t&>()) } -> std::same_as<typename T::error_t>;
// compute refraction correction for given altitude: refractCorrection(alt, refr_params, refr_corr)
{
t.refractCorrection(std::declval<typename T::coord_t>(), std::declval<typename T::refract_result_t>(),
std::declval<typename T::coord_t&>())
} -> std::same_as<typename T::error_t>;
};
/* A VERY GENERIC MOUNT HARDWARE CONCEPT */
template <typename T>
concept mcc_mount_hardware_c = requires(T t, const T t_const) {
requires mcc_error_c<typename T::error_t>;
typename T::config_t;
typename T::time_point_t;
typename T::coord_t;
{ t_const.id() } -> mcc_formattable;
// hardware configuration
{ t.setConfig(std::declval<typename T::config_t>()) } -> std::same_as<typename T::error_t>;
{ t.getConfig(std::declval<typename T::config_t&>()) } -> std::same_as<typename T::error_t>;
// at least contains time of measurement and coordinates for x,y axes
requires requires(typename T::axes_pos_t pos) {
requires std::same_as<decltype(pos.time_point), typename T::time_point_t>;
requires std::same_as<decltype(pos.x), typename T::coord_t>;
requires std::same_as<decltype(pos.y), typename T::coord_t>;
};
{ t.setPos(std::declval<typename T::axes_pos_t>()) } -> std::same_as<typename T::error_t>;
{ t.getPos(std::declval<typename T::axes_pos_t&>()) } -> std::same_as<typename T::error_t>;
};
/* POINTING-ERROR CORRECTION */
template <typename T>
concept mcc_mount_pec_c = requires(T t, const T t_const) {
requires mcc_error_c<typename T::error_t>;
typename T::coord_t;
typename T::pec_data_t;
// at least contains .dx and .dy fields
requires requires(typename T::pec_result_t res) {
requires std::same_as<decltype(res.dx), typename T::coord_t>;
requires std::same_as<decltype(res.dy), typename T::coord_t>;
};
{ t.setData(std::declval<typename T::pec_data_t>()) } -> std::same_as<typename T::error_t>;
{ t_const.getData(std::declval<typename T::pec_data_t&>()) } -> std::same_as<typename T::error_t>;
{
t.compute(std::declval<const typename T::coord_t&>(), std::declval<const typename T::coord_t&>(),
std::declval<typename T::pec_result_t>())
} -> std::same_as<typename T::error_t>;
};
/* MOUNT STATE TELEMETRY */
template <typename T>
concept mcc_mount_telemetry_c = requires(T t, const T t_const) {
typename T::error_t;
typename T::mount_telemetry_data_t;
{ t_const.errorString(std::declval<typename T::error_t>()) } -> mcc_formattable;
{ t.update() } -> std::same_as<typename T::error_t>;
{ t_const.data() } -> std::same_as<typename T::mount_telemetry_data_t>;
};
/* MOUNT PROHIBITED ZONE */
template <typename T>
concept mcc_prohibited_zone_c = std::movable<T> && requires(T t, const T t_const) {
typename T::coord_t;
typename T::time_point_t;
// the type 'T' must define static constexpr member of type MccCoordPairKind
// to declarate type of coordinate pair used to describe the zone.
// This coordinate pair must be used as input in the class methods.
requires requires {
requires std::same_as<decltype(T::zoneCoordPairKind), const MccCoordPairKind>;
[]() {
constexpr MccCoordPairKind val = T::zoneCoordPairKind;
}(); // to ensure that 'zoneCoordPairKind' can be used at compile-time context
};
// return a name of the zone
{ t_const.name() } -> mcc_formattable;
// check if given coordinates are in the zone at given time point
{
t.inZone(std::declval<typename T::coord_t>(), std::declval<typename T::coord_t>(),
std::declval<typename T::time_point_t>())
} -> std::convertible_to<bool>;
// for given coordinates and time the method computes a time to reach the zone
{
t.timeTo(std::declval<typename T::coord_t>(), std::declval<typename T::coord_t>(),
std::declval<typename T::time_point_t>())
} -> mcc_time_duration_c;
// for given coordinates and time the method computes a time to exit from the zone
{
t.timeFrom(std::declval<typename T::coord_t>(), std::declval<typename T::coord_t>(),
std::declval<typename T::time_point_t>())
} -> mcc_time_duration_c;
};
/* MOUNT GENERIC CONFIGURATION */
template <typename T>
concept mcc_mount_config_c = requires(T t) {
{ t.astromEngine() } -> mcc_astrom_engine_c;
{ t.pec() } -> mcc_mount_pec_c;
{ t.hardware() } -> mcc_mount_hardware_c;
};
} // namespace mcc::traits