start developing of FITPACK C++ bindings mount_server.cpp: fix compilation error with GCC15
105 lines
3.9 KiB
Fortran
105 lines
3.9 KiB
Fortran
recursive subroutine bispev(tx,nx,ty,ny,c,kx,ky,x,mx,y,my,z,
|
|
* wrk,lwrk,iwrk,kwrk,ier)
|
|
implicit none
|
|
c subroutine bispev evaluates on a grid (x(i),y(j)),i=1,...,mx; j=1,...
|
|
c ,my a bivariate spline s(x,y) of degrees kx and ky, given in the
|
|
c b-spline representation.
|
|
c
|
|
c calling sequence:
|
|
c call bispev(tx,nx,ty,ny,c,kx,ky,x,mx,y,my,z,wrk,lwrk,
|
|
c * iwrk,kwrk,ier)
|
|
c
|
|
c input parameters:
|
|
c tx : real array, length nx, which contains the position of the
|
|
c knots in the x-direction.
|
|
c nx : integer, giving the total number of knots in the x-direction
|
|
c ty : real array, length ny, which contains the position of the
|
|
c knots in the y-direction.
|
|
c ny : integer, giving the total number of knots in the y-direction
|
|
c c : real array, length (nx-kx-1)*(ny-ky-1), which contains the
|
|
c b-spline coefficients.
|
|
c kx,ky : integer values, giving the degrees of the spline.
|
|
c x : real array of dimension (mx).
|
|
c before entry x(i) must be set to the x co-ordinate of the
|
|
c i-th grid point along the x-axis.
|
|
c tx(kx+1)<=x(i-1)<=x(i)<=tx(nx-kx), i=2,...,mx.
|
|
c mx : on entry mx must specify the number of grid points along
|
|
c the x-axis. mx >=1.
|
|
c y : real array of dimension (my).
|
|
c before entry y(j) must be set to the y co-ordinate of the
|
|
c j-th grid point along the y-axis.
|
|
c ty(ky+1)<=y(j-1)<=y(j)<=ty(ny-ky), j=2,...,my.
|
|
c my : on entry my must specify the number of grid points along
|
|
c the y-axis. my >=1.
|
|
c wrk : real array of dimension lwrk. used as workspace.
|
|
c lwrk : integer, specifying the dimension of wrk.
|
|
c lwrk >= mx*(kx+1)+my*(ky+1)
|
|
c iwrk : integer array of dimension kwrk. used as workspace.
|
|
c kwrk : integer, specifying the dimension of iwrk. kwrk >= mx+my.
|
|
c
|
|
c output parameters:
|
|
c z : real array of dimension (mx*my).
|
|
c on successful exit z(my*(i-1)+j) contains the value of s(x,y)
|
|
c at the point (x(i),y(j)),i=1,...,mx;j=1,...,my.
|
|
c ier : integer error flag
|
|
c ier=0 : normal return
|
|
c ier=10: invalid input data (see restrictions)
|
|
c
|
|
c restrictions:
|
|
c mx >=1, my >=1, lwrk>=mx*(kx+1)+my*(ky+1), kwrk>=mx+my
|
|
c tx(kx+1) <= x(i-1) <= x(i) <= tx(nx-kx), i=2,...,mx
|
|
c ty(ky+1) <= y(j-1) <= y(j) <= ty(ny-ky), j=2,...,my
|
|
c
|
|
c other subroutines required:
|
|
c fpbisp,fpbspl
|
|
c
|
|
c references :
|
|
c de boor c : on calculating with b-splines, j. approximation theory
|
|
c 6 (1972) 50-62.
|
|
c cox m.g. : the numerical evaluation of b-splines, j. inst. maths
|
|
c applics 10 (1972) 134-149.
|
|
c dierckx p. : curve and surface fitting with splines, monographs on
|
|
c numerical analysis, oxford university press, 1993.
|
|
c
|
|
c author :
|
|
c p.dierckx
|
|
c dept. computer science, k.u.leuven
|
|
c celestijnenlaan 200a, b-3001 heverlee, belgium.
|
|
c e-mail : Paul.Dierckx@cs.kuleuven.ac.be
|
|
c
|
|
c latest update : march 1987
|
|
c
|
|
c ..scalar arguments..
|
|
integer nx,ny,kx,ky,mx,my,lwrk,kwrk,ier
|
|
c ..array arguments..
|
|
integer iwrk(kwrk)
|
|
real*8 tx(nx),ty(ny),c((nx-kx-1)*(ny-ky-1)),x(mx),y(my),z(mx*my),
|
|
* wrk(lwrk)
|
|
c ..local scalars..
|
|
integer i,iw,lwest
|
|
c ..
|
|
c before starting computations a data check is made. if the input data
|
|
c are invalid control is immediately repassed to the calling program.
|
|
ier = 10
|
|
lwest = (kx+1)*mx+(ky+1)*my
|
|
if(lwrk.lt.lwest) go to 100
|
|
if(kwrk.lt.(mx+my)) go to 100
|
|
if (mx.lt.1) go to 100
|
|
if (mx.eq.1) go to 30
|
|
go to 10
|
|
10 do 20 i=2,mx
|
|
if(x(i).lt.x(i-1)) go to 100
|
|
20 continue
|
|
30 if (my.lt.1) go to 100
|
|
if (my.eq.1) go to 60
|
|
go to 40
|
|
40 do 50 i=2,my
|
|
if(y(i).lt.y(i-1)) go to 100
|
|
50 continue
|
|
60 ier = 0
|
|
iw = mx*(kx+1)+1
|
|
call fpbisp(tx,nx,ty,ny,c,kx,ky,x,mx,y,my,z,wrk(1),wrk(iw),
|
|
* iwrk(1),iwrk(mx+1))
|
|
100 return
|
|
end
|