Timur A. Fatkhullin 5279d1c41a add FITPACK Fortran library
start developing of FITPACK C++ bindings
mount_server.cpp: fix compilation error with GCC15
2025-05-05 17:24:21 +03:00

170 lines
5.1 KiB
Fortran

recursive subroutine fpcoco(iopt,m,x,y,w,v,s,nest,maxtr,maxbin,
* n,t,c,sq,sx,bind,e,wrk,lwrk,iwrk,kwrk,ier)
implicit none
c ..scalar arguments..
real*8 s,sq
integer iopt,m,nest,maxtr,maxbin,n,lwrk,kwrk,ier
c ..array arguments..
integer iwrk(kwrk)
real*8 x(m),y(m),w(m),v(m),t(nest),c(nest),sx(m),e(nest),wrk(lwrk)
*
logical bind(nest)
c ..local scalars..
integer i,ia,ib,ic,iq,iu,iz,izz,i1,j,k,l,l1,m1,nmax,nr,n4,n6,n8,
* ji,jib,jjb,jl,jr,ju,mb,nm
real*8 sql,sqmax,term,tj,xi,half
c ..subroutine references..
c fpcosp,fpbspl,fpadno,fpdeno,fpseno,fpfrno
c ..
c set constant
half = 0.5e0
c determine the maximal admissible number of knots.
nmax = m+4
c the initial choice of knots depends on the value of iopt.
c if iopt=0 the program starts with the minimal number of knots
c so that can be guarantied that the concavity/convexity constraints
c will be satisfied.
c if iopt = 1 the program will continue from the point on where she
c left at the foregoing call.
if(iopt.gt.0) go to 80
c find the minimal number of knots.
c a knot is located at the data point x(i), i=2,3,...m-1 if
c 1) v(i) ^= 0 and
c 2) v(i)*v(i-1) <= 0 or v(i)*v(i+1) <= 0.
m1 = m-1
n = 4
do 20 i=2,m1
if(v(i).eq.0. .or. (v(i)*v(i-1).gt.0. .and.
* v(i)*v(i+1).gt.0.)) go to 20
n = n+1
c test whether the required storage space exceeds the available one.
if(n+4.gt.nest) go to 200
t(n) = x(i)
20 continue
c find the position of the knots t(1),...t(4) and t(n-3),...t(n) which
c are needed for the b-spline representation of s(x).
do 30 i=1,4
t(i) = x(1)
n = n+1
t(n) = x(m)
30 continue
c test whether the minimum number of knots exceeds the maximum number.
if(n.gt.nmax) go to 210
c main loop for the different sets of knots.
c find corresponding values e(j) to the knots t(j+3),j=1,2,...n-6
c e(j) will take the value -1,1, or 0 according to the requirement
c that s(x) must be locally convex or concave at t(j+3) or that the
c sign of s''(x) is unrestricted at that point.
40 i= 1
xi = x(1)
j = 4
tj = t(4)
n6 = n-6
do 70 l=1,n6
50 if(xi.eq.tj) go to 60
i = i+1
xi = x(i)
go to 50
60 e(l) = v(i)
j = j+1
tj = t(j)
70 continue
c we partition the working space
nm = n+maxbin
mb = maxbin+1
ia = 1
ib = ia+4*n
ic = ib+nm*maxbin
iz = ic+n
izz = iz+n
iu = izz+n
iq = iu+maxbin
ji = 1
ju = ji+maxtr
jl = ju+maxtr
jr = jl+maxtr
jjb = jr+maxtr
jib = jjb+mb
c given the set of knots t(j),j=1,2,...n, find the least-squares cubic
c spline which satisfies the imposed concavity/convexity constraints.
call fpcosp(m,x,y,w,n,t,e,maxtr,maxbin,c,sq,sx,bind,nm,mb,wrk(ia),
*
* wrk(ib),wrk(ic),wrk(iz),wrk(izz),wrk(iu),wrk(iq),iwrk(ji),
* iwrk(ju),iwrk(jl),iwrk(jr),iwrk(jjb),iwrk(jib),ier)
c if sq <= s or in case of abnormal exit from fpcosp, control is
c repassed to the driver program.
if(sq.le.s .or. ier.gt.0) go to 300
c calculate for each knot interval t(l-1) <= xi <= t(l) the
c sum((wi*(yi-s(xi)))**2).
c find the interval t(k-1) <= x <= t(k) for which this sum is maximal
c on the condition that this interval contains at least one interior
c data point x(nr) and that s(x) is not given there by a straight line.
80 sqmax = 0.
sql = 0.
l = 5
nr = 0
i1 = 1
n4 = n-4
do 110 i=1,m
term = (w(i)*(sx(i)-y(i)))**2
if(x(i).lt.t(l) .or. l.gt.n4) go to 100
term = term*half
sql = sql+term
if(i-i1.le.1 .or. (bind(l-4).and.bind(l-3))) go to 90
if(sql.le.sqmax) go to 90
k = l
sqmax = sql
nr = i1+(i-i1)/2
90 l = l+1
i1 = i
sql = 0.
100 sql = sql+term
110 continue
if(m-i1.le.1 .or. (bind(l-4).and.bind(l-3))) go to 120
if(sql.le.sqmax) go to 120
k = l
nr = i1+(m-i1)/2
c if no such interval is found, control is repassed to the driver
c program (ier = -1).
120 if(nr.eq.0) go to 190
c if s(x) is given by the same straight line in two succeeding knot
c intervals t(l-1) <= x <= t(l) and t(l) <= x <= t(l+1),delete t(l)
n8 = n-8
l1 = 0
if(n8.le.0) go to 150
do 140 i=1,n8
if(.not. (bind(i).and.bind(i+1).and.bind(i+2))) go to 140
l = i+4-l1
if(k.gt.l) k = k-1
n = n-1
l1 = l1+1
do 130 j=l,n
t(j) = t(j+1)
130 continue
140 continue
c test whether we cannot further increase the number of knots.
150 if(n.eq.nmax) go to 180
if(n.eq.nest) go to 170
c locate an additional knot at the point x(nr).
j = n
do 160 i=k,n
t(j+1) = t(j)
j = j-1
160 continue
t(k) = x(nr)
n = n+1
c restart the computations with the new set of knots.
go to 40
c error codes and messages.
170 ier = -3
go to 300
180 ier = -2
go to 300
190 ier = -1
go to 300
200 ier = 4
go to 300
210 ier = 5
300 return
end