Timur A. Fatkhullin 5279d1c41a add FITPACK Fortran library
start developing of FITPACK C++ bindings
mount_server.cpp: fix compilation error with GCC15
2025-05-05 17:24:21 +03:00

441 lines
15 KiB
Fortran

recursive subroutine fpspgr(iopt,ider,u,mu,v,mv,r,mr,r0,r1,s,
* nuest,nvest,tol,maxit,nc,nu,tu,nv,tv,c,fp,fp0,fpold,reducu,
* reducv,fpintu,fpintv,dr,step,lastdi,nplusu,nplusv,lastu0,
* lastu1,nru,nrv,nrdatu,nrdatv,wrk,lwrk,ier)
implicit none
c ..
c ..scalar arguments..
integer mu,mv,mr,nuest,nvest,maxit,nc,nu,nv,lastdi,nplusu,nplusv,
* lastu0,lastu1,lwrk,ier
real*8 r0,r1,s,tol,fp,fp0,fpold,reducu,reducv
c ..array arguments..
integer iopt(3),ider(4),nrdatu(nuest),nrdatv(nvest),nru(mu),
* nrv(mv)
real*8 u(mu),v(mv),r(mr),tu(nuest),tv(nvest),c(nc),fpintu(nuest),
* fpintv(nvest),dr(6),wrk(lwrk),step(2)
c ..local scalars..
real*8 acc,fpms,f1,f2,f3,p,per,pi,p1,p2,p3,vb,ve,rmax,rmin,rn,one,
*
* con1,con4,con9
integer i,ich1,ich3,ifbu,ifbv,ifsu,ifsv,istart,iter,i1,i2,j,ju,
* ktu,l,l1,l2,l3,l4,mpm,mumin,mu0,mu1,nn,nplu,nplv,npl1,nrintu,
* nrintv,nue,numax,nve,nvmax
c ..local arrays..
integer idd(4)
real*8 drr(6)
c ..function references..
real*8 abs,datan2,fprati
integer max0,min0
c ..subroutine references..
c fpknot,fpopsp
c ..
c set constants
one = 1d0
con1 = 0.1e0
con9 = 0.9e0
con4 = 0.4e-01
c initialization
ifsu = 0
ifsv = 0
ifbu = 0
ifbv = 0
p = -one
mumin = 4
if(ider(1).ge.0) mumin = mumin-1
if(iopt(2).eq.1 .and. ider(2).eq.1) mumin = mumin-1
if(ider(3).ge.0) mumin = mumin-1
if(iopt(3).eq.1 .and. ider(4).eq.1) mumin = mumin-1
if(mumin.eq.0) mumin = 1
pi = datan2(0d0,-one)
per = pi+pi
vb = v(1)
ve = vb+per
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
c part 1: determination of the number of knots and their position. c
c **************************************************************** c
c given a set of knots we compute the least-squares spline sinf(u,v) c
c and the corresponding sum of squared residuals fp = f(p=inf). c
c if iopt(1)=-1 sinf(u,v) is the requested approximation. c
c if iopt(1)>=0 we check whether we can accept the knots: c
c if fp <= s we will continue with the current set of knots. c
c if fp > s we will increase the number of knots and compute the c
c corresponding least-squares spline until finally fp <= s. c
c the initial choice of knots depends on the value of s and iopt. c
c if s=0 we have spline interpolation; in that case the number of c
c knots in the u-direction equals nu=numax=mu+6+iopt(2)+iopt(3) c
c and in the v-direction nv=nvmax=mv+7. c
c if s>0 and c
c iopt(1)=0 we first compute the least-squares polynomial,i.e. a c
c spline without interior knots : nu=8 ; nv=8. c
c iopt(1)=1 we start with the set of knots found at the last call c
c of the routine, except for the case that s > fp0; then we c
c compute the least-squares polynomial directly. c
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
if(iopt(1).lt.0) go to 120
c acc denotes the absolute tolerance for the root of f(p)=s.
acc = tol*s
c numax and nvmax denote the number of knots needed for interpolation.
numax = mu+6+iopt(2)+iopt(3)
nvmax = mv+7
nue = min0(numax,nuest)
nve = min0(nvmax,nvest)
if(s.gt.0.) go to 100
c if s = 0, s(u,v) is an interpolating spline.
nu = numax
nv = nvmax
c test whether the required storage space exceeds the available one.
if(nu.gt.nuest .or. nv.gt.nvest) go to 420
c find the position of the knots in the v-direction.
do 10 l=1,mv
tv(l+3) = v(l)
10 continue
tv(mv+4) = ve
l1 = mv-2
l2 = mv+5
do 20 i=1,3
tv(i) = v(l1)-per
tv(l2) = v(i+1)+per
l1 = l1+1
l2 = l2+1
20 continue
c if not all the derivative values g(i,j) are given, we will first
c estimate these values by computing a least-squares spline
idd(1) = ider(1)
if(idd(1).eq.0) idd(1) = 1
if(idd(1).gt.0) dr(1) = r0
idd(2) = ider(2)
idd(3) = ider(3)
if(idd(3).eq.0) idd(3) = 1
if(idd(3).gt.0) dr(4) = r1
idd(4) = ider(4)
if(ider(1).lt.0 .or. ider(3).lt.0) go to 30
if(iopt(2).ne.0 .and. ider(2).eq.0) go to 30
if(iopt(3).eq.0 .or. ider(4).ne.0) go to 70
c we set up the knots in the u-direction for computing the least-squares
c spline.
30 i1 = 3
i2 = mu-2
nu = 4
do 40 i=1,mu
if(i1.gt.i2) go to 50
nu = nu+1
tu(nu) = u(i1)
i1 = i1+2
40 continue
50 do 60 i=1,4
tu(i) = 0.
nu = nu+1
tu(nu) = pi
60 continue
c we compute the least-squares spline for estimating the derivatives.
call fpopsp(ifsu,ifsv,ifbu,ifbv,u,mu,v,mv,r,mr,r0,r1,dr,iopt,idd,
* tu,nu,tv,nv,nuest,nvest,p,step,c,nc,fp,fpintu,fpintv,nru,nrv,
* wrk,lwrk)
ifsu = 0
c if all the derivatives at the origin are known, we compute the
c interpolating spline.
c we set up the knots in the u-direction, needed for interpolation.
70 nn = numax-8
if(nn.eq.0) go to 95
ju = 2-iopt(2)
do 80 l=1,nn
tu(l+4) = u(ju)
ju = ju+1
80 continue
nu = numax
l = nu
do 90 i=1,4
tu(i) = 0.
tu(l) = pi
l = l-1
90 continue
c we compute the interpolating spline.
95 call fpopsp(ifsu,ifsv,ifbu,ifbv,u,mu,v,mv,r,mr,r0,r1,dr,iopt,idd,
* tu,nu,tv,nv,nuest,nvest,p,step,c,nc,fp,fpintu,fpintv,nru,nrv,
* wrk,lwrk)
go to 430
c if s>0 our initial choice of knots depends on the value of iopt(1).
100 ier = 0
if(iopt(1).eq.0) go to 115
step(1) = -step(1)
step(2) = -step(2)
if(fp0.le.s) go to 115
c if iopt(1)=1 and fp0 > s we start computing the least-squares spline
c according to the set of knots found at the last call of the routine.
c we determine the number of grid coordinates u(i) inside each knot
c interval (tu(l),tu(l+1)).
l = 5
j = 1
nrdatu(1) = 0
mu0 = 2-iopt(2)
mu1 = mu-1+iopt(3)
do 105 i=mu0,mu1
nrdatu(j) = nrdatu(j)+1
if(u(i).lt.tu(l)) go to 105
nrdatu(j) = nrdatu(j)-1
l = l+1
j = j+1
nrdatu(j) = 0
105 continue
c we determine the number of grid coordinates v(i) inside each knot
c interval (tv(l),tv(l+1)).
l = 5
j = 1
nrdatv(1) = 0
do 110 i=2,mv
nrdatv(j) = nrdatv(j)+1
if(v(i).lt.tv(l)) go to 110
nrdatv(j) = nrdatv(j)-1
l = l+1
j = j+1
nrdatv(j) = 0
110 continue
idd(1) = ider(1)
idd(2) = ider(2)
idd(3) = ider(3)
idd(4) = ider(4)
go to 120
c if iopt(1)=0 or iopt(1)=1 and s >= fp0,we start computing the least-
c squares polynomial (which is a spline without interior knots).
115 ier = -2
idd(1) = ider(1)
idd(2) = 1
idd(3) = ider(3)
idd(4) = 1
nu = 8
nv = 8
nrdatu(1) = mu-2+iopt(2)+iopt(3)
nrdatv(1) = mv-1
lastdi = 0
nplusu = 0
nplusv = 0
fp0 = 0.
fpold = 0.
reducu = 0.
reducv = 0.
c main loop for the different sets of knots.mpm=mu+mv is a save upper
c bound for the number of trials.
120 mpm = mu+mv
do 270 iter=1,mpm
c find nrintu (nrintv) which is the number of knot intervals in the
c u-direction (v-direction).
nrintu = nu-7
nrintv = nv-7
c find the position of the additional knots which are needed for the
c b-spline representation of s(u,v).
i = nu
do 125 j=1,4
tu(j) = 0.
tu(i) = pi
i = i-1
125 continue
l1 = 4
l2 = l1
l3 = nv-3
l4 = l3
tv(l2) = vb
tv(l3) = ve
do 130 j=1,3
l1 = l1+1
l2 = l2-1
l3 = l3+1
l4 = l4-1
tv(l2) = tv(l4)-per
tv(l3) = tv(l1)+per
130 continue
c find an estimate of the range of possible values for the optimal
c derivatives at the origin.
ktu = nrdatu(1)+2-iopt(2)
if(ktu.lt.mumin) ktu = mumin
if(ktu.eq.lastu0) go to 140
rmin = r0
rmax = r0
l = mv*ktu
do 135 i=1,l
if(r(i).lt.rmin) rmin = r(i)
if(r(i).gt.rmax) rmax = r(i)
135 continue
step(1) = rmax-rmin
lastu0 = ktu
140 ktu = nrdatu(nrintu)+2-iopt(3)
if(ktu.lt.mumin) ktu = mumin
if(ktu.eq.lastu1) go to 150
rmin = r1
rmax = r1
l = mv*ktu
j = mr
do 145 i=1,l
if(r(j).lt.rmin) rmin = r(j)
if(r(j).gt.rmax) rmax = r(j)
j = j-1
145 continue
step(2) = rmax-rmin
lastu1 = ktu
c find the least-squares spline sinf(u,v).
150 call fpopsp(ifsu,ifsv,ifbu,ifbv,u,mu,v,mv,r,mr,r0,r1,dr,iopt,
* idd,tu,nu,tv,nv,nuest,nvest,p,step,c,nc,fp,fpintu,fpintv,nru,
* nrv,wrk,lwrk)
if(step(1).lt.0.) step(1) = -step(1)
if(step(2).lt.0.) step(2) = -step(2)
if(ier.eq.(-2)) fp0 = fp
c test whether the least-squares spline is an acceptable solution.
if(iopt(1).lt.0) go to 440
fpms = fp-s
if(abs(fpms) .lt. acc) go to 440
c if f(p=inf) < s, we accept the choice of knots.
if(fpms.lt.0.) go to 300
c if nu=numax and nv=nvmax, sinf(u,v) is an interpolating spline
if(nu.eq.numax .and. nv.eq.nvmax) go to 430
c increase the number of knots.
c if nu=nue and nv=nve we cannot further increase the number of knots
c because of the storage capacity limitation.
if(nu.eq.nue .and. nv.eq.nve) go to 420
if(ider(1).eq.0) fpintu(1) = fpintu(1)+(r0-dr(1))**2
if(ider(3).eq.0) fpintu(nrintu) = fpintu(nrintu)+(r1-dr(4))**2
ier = 0
c adjust the parameter reducu or reducv according to the direction
c in which the last added knots were located.
if (lastdi.lt.0) go to 160
if (lastdi.eq.0) go to 155
go to 170
155 nplv = 3
idd(2) = ider(2)
idd(4) = ider(4)
fpold = fp
go to 230
160 reducu = fpold-fp
go to 175
170 reducv = fpold-fp
c store the sum of squared residuals for the current set of knots.
175 fpold = fp
c find nplu, the number of knots we should add in the u-direction.
nplu = 1
if(nu.eq.8) go to 180
npl1 = nplusu*2
rn = nplusu
if(reducu.gt.acc) npl1 = rn*fpms/reducu
nplu = min0(nplusu*2,max0(npl1,nplusu/2,1))
c find nplv, the number of knots we should add in the v-direction.
180 nplv = 3
if(nv.eq.8) go to 190
npl1 = nplusv*2
rn = nplusv
if(reducv.gt.acc) npl1 = rn*fpms/reducv
nplv = min0(nplusv*2,max0(npl1,nplusv/2,1))
c test whether we are going to add knots in the u- or v-direction.
190 if (nplu.lt.nplv) go to 210
if (nplu.eq.nplv) go to 200
go to 230
200 if(lastdi.lt.0) go to 230
210 if(nu.eq.nue) go to 230
c addition in the u-direction.
lastdi = -1
nplusu = nplu
ifsu = 0
istart = 0
if(iopt(2).eq.0) istart = 1
do 220 l=1,nplusu
c add a new knot in the u-direction
call fpknot(u,mu,tu,nu,fpintu,nrdatu,nrintu,nuest,istart)
c test whether we cannot further increase the number of knots in the
c u-direction.
if(nu.eq.nue) go to 270
220 continue
go to 270
230 if(nv.eq.nve) go to 210
c addition in the v-direction.
lastdi = 1
nplusv = nplv
ifsv = 0
do 240 l=1,nplusv
c add a new knot in the v-direction.
call fpknot(v,mv,tv,nv,fpintv,nrdatv,nrintv,nvest,1)
c test whether we cannot further increase the number of knots in the
c v-direction.
if(nv.eq.nve) go to 270
240 continue
c restart the computations with the new set of knots.
270 continue
c test whether the least-squares polynomial is a solution of our
c approximation problem.
300 if(ier.eq.(-2)) go to 440
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
c part 2: determination of the smoothing spline sp(u,v) c
c ***************************************************** c
c we have determined the number of knots and their position. we now c
c compute the b-spline coefficients of the smoothing spline sp(u,v). c
c this smoothing spline depends on the parameter p in such a way that c
c f(p) = sumi=1,mu(sumj=1,mv((z(i,j)-sp(u(i),v(j)))**2) c
c is a continuous, strictly decreasing function of p. moreover the c
c least-squares polynomial corresponds to p=0 and the least-squares c
c spline to p=infinity. then iteratively we have to determine the c
c positive value of p such that f(p)=s. the process which is proposed c
c here makes use of rational interpolation. f(p) is approximated by a c
c rational function r(p)=(u*p+v)/(p+w); three values of p (p1,p2,p3) c
c with corresponding values of f(p) (f1=f(p1)-s,f2=f(p2)-s,f3=f(p3)-s)c
c are used to calculate the new value of p such that r(p)=s. c
c convergence is guaranteed by taking f1 > 0 and f3 < 0. c
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
c initial value for p.
p1 = 0.
f1 = fp0-s
p3 = -one
f3 = fpms
p = one
do 305 i=1,6
drr(i) = dr(i)
305 continue
ich1 = 0
ich3 = 0
c iteration process to find the root of f(p)=s.
do 350 iter = 1,maxit
c find the smoothing spline sp(u,v) and the corresponding sum f(p).
call fpopsp(ifsu,ifsv,ifbu,ifbv,u,mu,v,mv,r,mr,r0,r1,drr,iopt,
* idd,tu,nu,tv,nv,nuest,nvest,p,step,c,nc,fp,fpintu,fpintv,nru,
* nrv,wrk,lwrk)
c test whether the approximation sp(u,v) is an acceptable solution.
fpms = fp-s
if(abs(fpms).lt.acc) go to 440
c test whether the maximum allowable number of iterations has been
c reached.
if(iter.eq.maxit) go to 400
c carry out one more step of the iteration process.
p2 = p
f2 = fpms
if(ich3.ne.0) go to 320
if((f2-f3).gt.acc) go to 310
c our initial choice of p is too large.
p3 = p2
f3 = f2
p = p*con4
if(p.le.p1) p = p1*con9 + p2*con1
go to 350
310 if(f2.lt.0.) ich3 = 1
320 if(ich1.ne.0) go to 340
if((f1-f2).gt.acc) go to 330
c our initial choice of p is too small
p1 = p2
f1 = f2
p = p/con4
if(p3.lt.0.) go to 350
if(p.ge.p3) p = p2*con1 + p3*con9
go to 350
c test whether the iteration process proceeds as theoretically
c expected.
330 if(f2.gt.0.) ich1 = 1
340 if(f2.ge.f1 .or. f2.le.f3) go to 410
c find the new value of p.
p = fprati(p1,f1,p2,f2,p3,f3)
350 continue
c error codes and messages.
400 ier = 3
go to 440
410 ier = 2
go to 440
420 ier = 1
go to 440
430 ier = -1
fp = 0.
440 return
end